Abstract

Stationary fuel cells provide potential opportunities for energy savings when integrated with buildings. Through smart dispatch of both electrical power and heat generated by the fuel cells and managing the building loads, the buildings can achieve more efficient operation. In this paper, we develop an optimal energy dispatch controller to operate a fuel cell-integrated building. The controller leverages the inherent thermal storage and the dispatchable fuel cell to reduce its operating cost and to allow the building to participate in grid services. The proposed controller is implemented on two types of commercial buildings, a large office building and a large hotel, and the effectiveness of the controller is demonstrated through simulations. The results also indicate that the potential saving varies significantly with different system parameters, including season, fuel prices, and equipment sizing, which provide helpful insights for building operators and other stake holders.

References

References
1.
U.S. Department of Energy
,
2011
, “
Buildings Energy Data Book
,” https://openei.org/doe-opendata/dataset/buildings-energy-data-book/
2.
Ipakchi
,
A.
, and
Albuyeh
,
F.
,
2009
, “
Grid of the Future
,”
IEEE Power Energy Mag.
,
7
(
2
), pp.
52
62
. 10.1109/MPE.2008.931384
3.
Wang
,
H.
,
Wang
,
S.
, and
Tang
,
R.
,
2019
, “
Development of Grid-Responsive Buildings: Opportunities, Challenges, Capabilities and Applications of HVAC Systems in Non-Residential Buildings in Providing Ancillary Services by Fast Demand Responses to Smart Grids
,”
Appl. Energy
,
250
, pp.
697
712
. 10.1016/j.apenergy.2019.04.159
4.
Houwing
,
M.
,
Negenborn
,
R. R.
, and
De Schutter
,
B.
,
2010
, “
Demand Response With Micro-CHP Systems
,”
Proc. IEEE
,
99
(
1
), pp.
200
213
. 10.1109/JPROC.2010.2053831
5.
Hinnells
,
M.
,
2008
, “
Combined Heat and Power in Industry and Buildings
,”
Energy Policy
,
36
(
12
), pp.
4522
4526
. 10.1016/j.enpol.2008.09.018
6.
Robert Zogg
,
P.
, and
Brodrick
,
J.
,
2005
, “
Using CHP Systems in Commercial Buildings
,”
Ashrae J.
,
47
(
9
), pp.
33
36
.
7.
Elmer
,
T.
,
Worall
,
M.
,
Wu
,
S.
, and
Riffat
,
S. B.
,
2015
, “
Fuel Cell Technology for Domestic Built Environment Applications: State of-the-Art Review
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
913
931
. 10.1016/j.rser.2014.10.080
8.
Dodds
,
P. E.
,
Staffell
,
I.
,
Hawkes
,
A. D.
,
Li
,
F.
,
Grünewald
,
P.
,
McDowall
,
W.
, and
Ekins
,
P.
,
2015
, “
Hydrogen and Fuel Cell Technologies for Heating: A Review
,”
Int. J. Hydrogen Energy
,
40
(
5
), pp.
2065
2083
. 10.1016/j.ijhydene.2014.11.059
9.
Arsalis
,
A.
,
2019
, “
A Comprehensive Review of Fuel Cell-Based Micro-Combined-Heat-and-Power Systems
,”
Renewable Sustainable Energy Rev.
,
105
, pp.
391
414
. 10.1016/j.rser.2019.02.013
10.
Milcarek
,
R. J.
,
Ahn
,
J.
, and
Zhang
,
J.
,
2017
, “
Review and Analysis of Fuel Cell-Based, Micro-Cogeneration for Residential Applications: Current State and Future Opportunities
,”
Sci. Technol. Built Environ.
,
23
(
8
), pp.
1224
1243
. 10.1080/23744731.2017.1296301
11.
Gigliucci
,
G.
,
Petruzzi
,
L.
,
Cerelli
,
E.
,
Garzisi
,
A.
, and
La Mendola
,
A.
,
2004
, “
Demonstration of a Residential CHP System Based on PEM Fuel Cells
,”
J. Power Sources
,
131
(
1–2
), pp.
62
68
. 10.1016/j.jpowsour.2004.01.010
12.
Medrano
,
M.
,
Brouwer
,
J.
,
McDonell
,
V.
,
Mauzey
,
J.
, and
Samuelsen
,
S.
,
2008
, “
Integration of Distributed Generation Systems Into Generic Types of Commercial Buildings in California
,”
Energy Build.
,
40
(
4
), pp.
537
548
. 10.1016/j.enbuild.2007.04.005
13.
Ren
,
H.
, and
Gao
,
W.
,
2010
, “
Economic and Environmental Evaluation of Micro Chp Systems With Different Operating Modes for Residential Buildings in Japan
,”
Energy Build.
,
42
(
6
), pp.
853
861
. 10.1016/j.enbuild.2009.12.007
14.
McLarty
,
D.
,
Brouwer
,
J.
, and
Ainscough
,
C.
,
2016
, “
Economic Analysis of Fuel Cell Installations At Commercial Buildings Including Regional Pricing and Complementary Technologies
,”
Energy Build.
,
113
, pp.
112
122
. 10.1016/j.enbuild.2015.12.029
15.
Shaffer
,
B.
,
Tarroja
,
B.
, and
Samuelsen
,
S.
,
2015
, “
Dispatch of Fuel Cells As Transmission Integrated Grid Energy Resources to Support Renewables and Reduce Emissions
,”
Appl. Energy
,
148
, pp.
178
186
. 10.1016/j.apenergy.2015.03.018
16.
Dorer
,
V.
,
Weber
,
R.
, and
Weber
,
A.
,
2005
, “
Performance Assessment of Fuel Cell Micro-Cogeneration Systems for Residential Buildings
,”
Energy Build.
,
37
(
11
), pp.
1132
1146
. 10.1016/j.enbuild.2005.06.016
17.
Halvgaard
,
R.
,
Poulsen
,
N. K.
,
Madsen
,
H.
, and
Jørgensen
,
J. B.
,
2012
, “
Economic Model Predictive Control for Building Climate Control in a Smart Grid
,”
2012 IEEE PES Innovative Smart Grid Technologies (ISGT)
,
Washington, DC
,
Jan. 16–20
, IEEE, pp.
1
6
.
18.
Atam
,
E.
,
2016
, “
New Paths Toward Energy-Efficient Buildings: A Multiaspect Discussion of Advanced Model-Based Control
,”
IEEE Ind. Electron. Mag.
,
10
(
4
), pp.
50
66
. 10.1109/MIE.2016.2615127
19.
Oldewurtel
,
F.
,
Parisio
,
A.
,
Jones
,
C. N.
,
Gyalistras
,
D.
,
Gwerder
,
M.
,
Stauch
,
V.
,
Lehmann
,
B.
, and
Morari
,
M.
,
2012
, “
Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control
,”
Energy Build.
,
45
, pp.
15
27
. 10.1016/j.enbuild.2011.09.022
20.
Ma
,
Y.
,
Borrelli
,
F.
,
Hencey
,
B.
,
Coffey
,
B.
,
Bengea
,
S.
, and
Haves
,
P.
,
2011
, “
Model Predictive Control for the Operation of Building Cooling Systems
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
796
803
. 10.1109/tcst.2011.2124461
21.
Afram
,
A.
, and
Janabi-Sharifi
,
F.
,
2014
, “
Theory and Applications of HVAC Control Systems–A Review of Model Predictive Control (MPC)
,”
Build. Environ.
,
72
, pp.
343
355
. 10.1016/j.buildenv.2013.11.016
22.
Maddalena
,
E. T.
,
Lian
,
Y.
, and
Jones
,
C. N.
,
2020
, “
Data-Driven Methods for Building Control—A Review and Promising Future Directions
,”
Control Eng. Pract.
,
95
, p.
104211
. 10.1016/j.conengprac.2019.104211
23.
Sossan
,
F.
,
Bindner
,
H.
,
Madsen
,
H.
,
Torregrossa
,
D.
,
Chamorro
,
L. R.
, and
Paolone
,
M.
,
2014
, “
A Model Predictive Control Strategy for the Space Heating of a Smart Building Including Cogeneration of a Fuel Cell-Electrolyzer System
,”
Int. J. Electr. Power Energy Syst.
,
62
, pp.
879
889
. 10.1016/j.ijepes.2014.05.040
24.
Lin
,
Y.
,
Pratt
,
A.
,
Ball
,
B. L.
,
Saur
,
G.
,
Henze
,
G.
, and
McLarty
,
D.
,
2018
, “
Optimal Dispatch Controller for Fuel Cell-integrated Building
,”
International High Performance Buildings Conference
,
West Lafayette, IN
,
July 9–12
.
25.
U.S. Energy Information Administration (EIA)
,
2012
,
Commercial Buildings Energy Consumption Survey (CBECS)
, https://www.eia.gov/consumption/commercial/.
26.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
. 10.1016/S0005-1098(99)00214-9
27.
Gouda
,
M.
,
Danaher
,
S.
, and
Underwood
,
C.
,
2002
, “
Building Thermal Model Reduction Using Nonlinear Constrained Optimization
,”
Build. Environ.
,
37
(
12
), pp.
1255
1265
. 10.1016/S0360-1323(01)00121-4
28.
Atkinson
,
K. E.
,
2008
,
Chapter 6
,
An Introduction to Numerical Analysis
,
John Wiley & Sons
,
New York
.
29.
Deru
,
M.
,
Field
,
K.
,
Studer
,
D.
,
Benne
,
K.
,
Griffith
,
B.
,
Torcellini
,
P.
,
Liu
,
B.
,
Halverson
,
M.
,
Winiarski
,
D.
, and
Rosenberg
,
M.
,
2011
, “
U.S. Department of Energy Commercial Reference Building Models of the National Building Stock
.”
You do not currently have access to this content.