Abstract

In this work, a social welfare maximization problem is solved to determine the optimal scheduling of end-user controllable loads, smart appliances, and energy storage. The framework considers multiple retail energy suppliers as well as the AC power flow constraints of the distribution system. The demand side management program is focus on residential and commercial end-users. We have formulated a day-ahead residential bidding/buyback scheme modeled as an optimal power flow problem. This demand side program schedules end-user’s controllable loads or smart appliances and takes advantage of the flexibility of an energy storage system. The demand side management scheme minimizes retail company’s operating costs in the wholesale market, and it also considers distribution network constraints, assuring the appropriate quality of service. We have used a dual decomposition method to decouple some constraints while maximizing social welfare. We have also introduced a demand response call event with the main objective to take into consideration the system operational constraints. Through the coordination via local marginal prices, we have obtained a decentralized and distributed bidding/buyback scheme proposing a demand side management program that preserves the integrity of the private information of the different participants.

References

1.
Albadi
,
M. H.
, and
El-Saadany
,
E. F.
,
2007
, “
Demand Response in Electricity Markets: An Overview
,”
2007 IEEE PES General Meeting
,
Tampa, FL
, pp.
1
5
.
2.
Dileep
,
G.
,
2020
, “
A Survey on Smart Grid Technologies and Applications
,”
Renewable Energy
,
146
, pp.
2589
2625
. 10.1016/j.renene.2019.08.092
3.
Brown
,
D.
,
Hall
,
S.
, and
Davis
,
M. E.
,
2019
, “
Prosumers in the Post Subsidy Era: An Exploration of New Prosumer Business Models in the UK
,”
Energy Policy
,
135
. 10.1016/j.enpol.2019.110984
4.
De Ridder
,
F.
,
Hommelberg
,
M.
, and
Peeters
,
E.
,
2011
, “
Demand Side Integration: Four Potential Business Cases and An Analysis of the 2020 Situation
,”
Eur. Trans. Electrical Power
,
21
, pp.
1902
1913
. 10.1002/etep.529
5.
Riveros
,
J. Z.
,
Kubli
,
M.
, and
Ulli-Beer
,
S.
,
2019
, “
Prosumer Communities As Strategic Allies for Electric Utilities: Exploring Future Decentralization Trends in Switzerland
,”
Energy Research & Social Science
,
57
. https://doi.org/10.1016/j.erss.2019.101219
6.
Abrishambaf
,
O.
,
Lezama
,
F.
,
Faria
,
P.
, and
Vale
,
Z.
,
2019
, “
Towards Transactive Energy Systems: An Analysis on Current Trends
,”
Energy Strategy Rev.
,
26
, p.
100418
. 10.1016/j.esr.2019.100418
7.
Abapour
,
S.
,
Mohammadi-Ivatloo
,
B.
, and
Hagh
,
M. T.
,
2020
, “
Robust Bidding Strategy for Demand Response Aggregators in Electricity Market Based on Game Theory
,”
J. Cleaner. Prod.
,
243
. 10.1016/j.jclepro.2019.118393
8.
Abapour
,
S.
, and
Mohammadi-Ivatloo
,
B.
,
2019
, “
A Bayesian Game Theoretic Based Bidding Strategy for Demand Response Aggregators in Electricity Markets
,”
Sustainable Cities Soc.
,
54
. https://doi.org/10.1016/j.scs.2019.101787
9.
Zhou
,
S.
,
Zou
,
F.
,
Wu
,
Z.
,
Gu
,
W.
,
Hong
,
Q.
, and
Booth
,
C.
,
2020
, “
A Smart Community Energy Management Scheme Considering User Dominated Demand Side Response and P2p Trading
,”
Int. J. Electrical Power & Energy Syst.
,
114
. 10.1016/j.ijepes.2019.105378
10.
Rossello Busquet
,
A.
, and
Soler
,
J.
,
2011
, “
Towards Efficient Energy Management: Defining Hems and Smart Grid Objectives
,”
Int. J. Adv. Telecommun.
,
4
(
3&4
), pp.
249
263
.
11.
Ruth
,
M.
,
Pratt
,
A.
,
Lunacek
,
M.
,
Mittal
,
S.
,
Wu
,
H.
, and
Jones
,
W.
,
2015
, “
Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures
,”
23rd International Conference on Electricity Distribution
,
Lyon, France
.
12.
Braun
,
J. E.
,
2003
, “
Load Control Using Building Thermal Mass
,”
ASME J. Solar Eng.
,
125
, pp.
292
301
. 10.1115/1.1592184
13.
Afram
,
A.
, and
Janabi-Sharifi
,
F.
,
2014
, “
Theory and Applications of Hvac Control Systems–a Review of Model Predictive Control (mpc)
,”
Building Environ.
,
72
, pp.
343
355
. 10.1016/j.buildenv.2013.11.016
14.
Hu
,
M.
,
Xiao
,
F.
,
Jørgensen
,
J. B.
, and
Li
,
R.
,
2019
, “
Price-Responsive Model Predictive Control of Floor Heating Systems for Demand Response Using Building Thermal Mass
,”
Appl. Thermal Eng.
,
153
, pp.
316
329
. 10.1016/j.applthermaleng.2019.02.107
15.
Li
,
X.
, and
Malkawi
,
A.
,
2016
, “
Multi-Objective Optimization for Thermal Mass Model Predictive Control in Small and Medium Size Commercial Buildings Under Summer Weather Conditions
,”
Energy
,
112
, pp.
1194
1206
. 10.1016/j.energy.2016.07.021
16.
Behboodi
,
S.
,
Chassin
,
D. P.
,
Djilali
,
N.
, and
Crawford
,
C.
,
2018
, “
Transactive Control of Fast-acting Demand Response Based on Thermostatic Loads in Real-Time Retail Electricity Markets
,”
Appl. Energy
,
210
, pp.
1310
1320
. 10.1016/j.apenergy.2017.07.058
17.
Alasseri
,
R.
,
Rao
,
T. J.
, and
Sreekanth
,
K.
,
2018
, “
Conceptual Framework for Introducing Incentive-Based Demand Response Programs for Retail Electricity Markets
,”
Energy Strategy Reviews
,
19
, pp.
44
62
. 10.1016/j.esr.2017.12.001
18.
Rashidizadeh-Kermani
,
H.
,
Vahedipour-Dahraie
,
M.
,
Shafie-khah
,
M.
, and
Catalño
,
J. P.
,
2019
, “
Stochastic Programming Model for Scheduling Demand Response Aggregators Considering Uncertain Market Prices and Demands
,”
Int. J. Electrical Power & Energy Syst.
,
113
, pp.
528
538
. 10.1016/j.ijepes.2019.05.072
19.
Chen
,
L.
,
Li
,
N.
,
Jiang
,
L.
, and
Low
,
S. H.
,
2012
,
Optimal Demand Response: Problem Formulation and Deterministic Case
,
Springer
,
New York
, pp.
63
85
.
20.
Tsaousoglou
,
G.
,
Steriotis
,
K.
,
Efthymiopoulos
,
N.
,
Smpoukis
,
K.
, and
Varvarigos
,
E.
,
2019
, “
Near-Optimal Demand Side Management for Retail Electricity Markets with Strategic Users and Coupling Constraints
,”
Sustainable Energy, Grids and Networks
,
19
. 10.1016/j.segan.2019.100236
21.
Barbato
,
A.
, and
Capone
,
A.
,
2014
, “
Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey
,”
Energies
,
7
(
9
), pp.
5787
5824
. 10.3390/en7095787
22.
Baldick
,
R.
,
Grant
,
R.
, and
Kahn
,
E.
,
2004
, “
Theory and Application of Linear Supply Function Equilibrium in Electricity Markets
,”
J. Regulat. Econom.
,
25
(
2
), pp.
143
167
. 10.1023/B:REGE.0000012287.80449.97
23.
Chen
,
L.
,
Li
,
N.
, and
Low
,
S. H.
,
2011
, “
Two Market Models for Demand Response in Power Networks
,”
IEEE PES
,
Detroit, MI
.
24.
Rahim
,
S.
,
Javaid
,
N.
,
Ahmad
,
A.
,
Khan
,
S. A.
,
Khan
,
Z. A.
,
Alrajeh
,
N.
, and
Qasim
,
U.
,
2016
, “
Exploiting Heuristic Algorithms to Efficiently Utilize Energy Management Controllers with Renewable Energy Sources
,”
Energy and Buildings
,
129
, pp.
452
470
. 10.1016/j.enbuild.2016.08.008
25.
Mahmood
,
D.
,
Javaid
,
N.
,
Alrajeh
,
N.
,
Khan
,
Z. A.
,
Qasim
,
U.
,
Ahmed
,
I.
, and
Ilahi
,
M.
,
2016
, “
Realistic Scheduling Mechanism for Smart Homes
,”
Energies
,
9
(
3
), pp.
202
. 10.3390/en9030202
26.
Logenthiran
,
T.
,
Srinivasan
,
D.
, and
Shun
,
T. Z.
,
2012
, “
Demand Side Management in Smart Grid Using Heuristic Optimization
,”
IEEE Trans. Smart Grid
,
3
(
3
), pp.
1244
1252
. 10.1109/TSG.2012.2195686
27.
Li
,
N.
,
Chen
,
L.
, and
Low
,
S. H.
,
2011
, “
Optimal Demand Response Based on Utility Maximization in Power Networks
,”
IEEE PES General Meeting
,
Detroit, MI
.
28.
Jiang
,
L.
, and
Low
,
S.
,
2011
, “
Multi-Period Optimal Energy Procurement and Demand Response in Smart Grid with Uncertain Supply
,”
IEEE Conference on Decision and Control
,
Orlando, FL
.
29.
Gatsis
,
N.
, and
Giannakis
,
G.
,
2013
, “
Decomposition Algorithms for Market Clearing with Large Scale Demand Response
,”
IEEE Transactions on Smart Grid
,
4
(
4
), pp.
1976
1987
.
30.
Shi
,
W.
,
Li
,
N.
,
Xie
,
X.
,
Chu
,
C.-C.
, and
Gadh
,
R.
,
2014
, “
Optimal Residential Demand Response in Distribution Networks
,”
IEEE J. Selected Areas Comm.
,
32
.
31.
Montes de Oca
,
S.
,
Belzarena
,
P.
, and
Monzon
,
p.
,
2016
, “
Optimal Demand Response in Distribution Networks with Several Energy Retail Companies
,”
IEEE - CCA
,
Buenos Aires, Argentina
.
32.
Farivar
,
M.
, and
Low
,
S. H.
,
2013
, “
Branch Flow Model: Relaxations and Convexification–Part I
,”
IEEE Trans. Power Syst.
,
28
(
3
), pp.
2554
2564
. 10.1109/TPWRS.2013.2255317
33.
Nicholson
,
E.
,
2014
,
Price Formation in Organized Wholesale Electricity Markets
.
Technical Report, Federal Energy Regulatory Commission - Docket No. AD14-14-000
,
December
.
34.
Dutta
,
G.
, and
Mitra
,
K.
,
2017
, “
A Literature Review on Dynamic Pricing of Electricity
,”
J. Operat. Res. Soc.
,
68price
(
10
), pp.
1131
1145
. 10.1057/s41274-016-0149-4
35.
Gan
,
L.
,
Li
,
N.
,
Topcu
,
U.
, and
Low
,
S.
,
Dec. 2013
, “
Optimal Power Flow in Distribution Networks
,”
Proceedings of IEEE CDC
,
Florence, Italy
.
36.
Boyd
,
S.
,
Xiao
,
L.
,
Mutapcic
,
A.
, and
Mattingley
,
J.
,
2007
, “
Notes on decomposition methods
”.
Notes for EE364B
, pp.
1
36
.
37.
Bertsekas
,
D.
, and
Rheinboldt
,
W.
,
2014
,
Constrained Optimization and Lagrange Multiplier Methods
.
Computer Science and Applied Mathematics
,
Elsevier
.
38.
Alizadeh
,
F.
, and
Goldfarb
,
D.
,
2003
, “
Second-Order Cone Programming
,”
Mathematical Programming
,
95
, pp.
3
51
. https://doi.org/10.1007/s10107-002-0339-5
39.
Li
,
N.
,
Chen
,
L.
, and
Low
,
S.
,
2012
, “
Exact Convex Relaxaction of OPF for Radial Networks Using Branch Flow Model
,”
IEEE SmartGridComm
,
Tainan, Taiwan
.
40.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
. 10.1017/CBO9780511804441
41.
Kresting
,
W.
,
2012
, “
Radial Distribution Test Feeders
,”
IEEE PES
,
Colombus, OH
.
42.
Sturm
,
J. F.
,
2002
, “
Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems
.”
Department of Econometrics, Tilburg University
,
The Netherlands
.
43.
Ramanathan
,
B.
, and
Vittal
,
V.
,
2008
, “
A Framework for Evaluation of Advanced Direct Load Control With Minimum Disruption
,”
IEEE Trans. Power Syst.
,
23
(
4
), pp.
1681
1688
. 10.1109/TPWRS.2008.2004732
You do not currently have access to this content.