Abstract

The term “sustainability” has acquired an all-encompassing ambiguous aura, given that it touches on all facets of human endeavor. This paper, meant to provide a pedagogical framework for engineering education, starts by pointing out that since technology is an important and fundamental driver of current human development and inextricably interwoven into the societal fabric, the discourse on sustainability and sustainable development should evolve beyond its environmental and social origins. One should explicitly recognize the importance of technology in profundly shaping the discourse and not simply view it as an enabler of meeting preset equipment and system performance targets. In order to fragment the monolithic implied by the term “sustainability,” a categorization is then suggested ranging from individual products to wicked/complex adaptive systems as a fundamental level of separation. Subsequently, it is argued that the objective analysis of the multidimensional-spatial-temporal nature of sustainability, meant for the assessment of actionable design alternatives and for tracking the status of implemented measures, requires the definition of a small set of quantifiable umbrella capabilities and sub-attributes. The need to identify direct or surrogate parameters/variables and performance measures/metrics which characterize these sub-attributes is then discussed and mapped onto the application categories. Weighting and aggregating these sub-attributes to quantify the umbrella attributes necessarily introduce normative/aspirational preferences/biases of the various stakeholders, and this issue is also discussed. Finally, the two prevalent sustainability assessment frameworks, namely, the structure-based and the performance-based, are reviewed in terms of strengths and weaknesses and illustrative publications cited, and it is urged that more research be undertaken to synthesize these somewhat disparate approaches in dealing with natural, social, economic, political, and technological systems and organizations.

References

1.
Allenby
,
B.
,
2012
,
The Theory and Practice of Sustainable Engineering
,
Pearson
,
Upper Saddle River, NJ
.
2.
Randers
,
J.
,
2012
,
2052: A Global Forecast for the Next Forty Years
,
Chelsea Green Publishing
,
White River Junction, VT
.
3.
Brundtland Report
,
1987
,
Report of the World Commission on Environment and Development: Our Common Future
,
Oxford University Press
,
UK
.
4.
Meadows
,
D.
,
Meadows
,
D. L.
, and
Behrens
,
W. W.
,
1992
,
Beyond the Limits
,
Chelsea Green Publishing Co
,
White River Junction, VT
.
5.
Anderies
,
J. M.
,
Folke
,
C.
,
Walker
,
B.
, and
Ostrom
,
E.
,
2013
, “
Aligning Key Concepts for Global Change Policy: Robustness, Resilience, and Sustainability
,”
Ecol. Soc.
,
18
(
2
), p.
8
. 10.5751/ES-05178-180208
6.
Fiksel
,
J.
,
2003
, “
Designing Resilient, Sustainable Systems
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5330
5339
. 10.1021/es0344819
7.
Sala
,
S.
,
Ciuffo
,
B.
, and
Nijkamp
,
P.
,
2015
, “
A Systemic Framework for Sustainability Assessment
,”
Ecol. Econ.
,
119
, pp.
314
325
. 10.1016/j.ecolecon.2015.09.015
8.
Harremoes
,
P.
,
Gee
,
D.
,
MacGarvin
,
M.
,
Stirling
,
A.
,
Keys
,
J.
,
Wynne
,
B.
and
Vaz
,
S. G.
,
2001
,
Late Lessons From Early Warnings: The Precautionary Principle 1896–2000 (20010)
,
Environmental Issue Report No. 22
,
European Environment Agency
,
Copenhagen, Denmark
.
9.
Sterling
,
A.
,
2003
, “Renewables, Sustainability and Precaution: Beyond Environmental Cost-Benefit and Risk Analysis, Chapter 19,”
Issues in Environmental Science and Technology
,
R
.
E
.
Hester
, and
R
.
M
.
Harrison
, eds.,
Royal Society of Chemistry
,
Cambridge, UK
.
10.
de Vries
,
B. J. M.
,
2013
,
Sustainability Science
,
Cambridge University Press
,
NY
.
11.
Kates
,
R. W.
,
Clark
,
W. C.
,
Corell
,
R.
,
Hall
,
J. M.
,
Jaeger
,
C. C.
,
Lowe
,
I.
,
McCarthy
,
J. J.
,
Schellnhuber
,
H. J.
,
Bolin
,
B.
,
Dickson
,
N. M.
,
Faucheux
,
S.
,
Gallopin
,
G. C.
,
Grübler
,
A.
,
Huntley
,
B.
,
Jäger
,
J.
,
Jodha
,
N. S.
,
Kasperson
,
R. E.
,
Mabogunje
,
A.
,
Matson
,
P.
,
Mooney
,
H.
,
Moore
III,
B.
,
O’Riordan
,
T.
, and
Svedin
,
U.
,
2001
, “
Sustainability Science, Science’s Compass Policy Forum
,”
Science
,
292
(5517), pp.
641–642
.
12.
Daly
,
H.
,
1990
, “
Commentary: Toward Some Operational Principles of Sustainable Development
,”
Ecol. Econ.
,
2
(1), pp.
1
6
. 10.1016/0921-8009(90)90010-R
13.
Bell
,
S.
, and
Morse
,
S.
,
2008
,
Sustainability IndicatorsMeasuring the Immeasurable
,
Earthscan
,
London
.
14.
Walker
,
S.
,
2003
, “
Sustainability—the Evolution of a Contemporary Myth
,”
Proceedings of the 5th European Academy of Design Conference
,
Barcelona, Spain
,
Apr. 28–30
.
15.
Mitchell
,
M.
,
2009
,
Complexity: A Guided Tour
,
Oxford University Press
,
New York
.
16.
de Weck
,
O. L.
,
Roos
,
D.
, and
Meyer
,
C. L.
,
2011
,
Engineering Systems: Meeting Human Needs in a Complex Technological World
,
MIT Press
,
Cambridge, MA
.
17.
Graedel
,
T. E.
, and
Allenby
,
B. R.
,
2010
,
Industrial Ecology and Sustainable Engineering
,
Pearson Education Inc, Prentice Hall, Boston, MA
.
18.
USGBC
,
2013
,
LEED v4 for Building Design and Construction
,
U.S. Green Building Council
,
Washington, DC
.
19.
Moslehi
,
S.
, and
Reddy
,
T. A.
,
2019a
, “
A New Quantitative Life Cycle Sustainability Assessment Framework: Application to Integrated Energy Systems
,”
Appl. Energy J.
,
239
, pp.
482
493
. 10.1016/j.apenergy.2019.01.237
20.
Moslehi
,
S.
, and
Reddy
,
T. A.
,
2019b
, “
An LCA Methodology to Assess Location-Specific Environmental Externalities of Integrated Energy Systems
,”
Sustain. Cities Soc.
,
46
, p.
101425
. 10.1016/j.scs.2019.101425
21.
Halasah
,
S. A.
,
Pearlmutter
,
D.
, and
Feuermann
,
D.
,
2013
, “
Field Installation Versus Local Integration of Photovoltaic Systems and Their Effect on Energy Evaluation Metrics
,”
Energy Policy
,
52
, pp.
462
471
. 10.1016/j.enpol.2012.09.063
22.
Reddy
,
T. A.
,
2020
, “
Resilience of Complex Adaptive Systems: A Pedagogical Framework for Engineering Education and Research
,”
ASME J. Eng. Sustain. Build. Cities.
accepted for publication. http://dx.doi.org/10.1115/1.4046853
23.
Forrester
,
J. W.
,
1968
,
Principles of Systems
,
Wright-Allen Press
,
Cambridge, MA
.
24.
Forrester
,
J. W.
,
2009
,
Some Basic Concepts in System Dynamics
,
Sloan School of Management, MIT
,
January
,
Boston, MA
.
25.
Meadows
,
D.
,
Meadows
,
D. L.
,
Randers
,
J.
, and
Behrens
,
W. W.
,
1974
,
The Limits of Growth
,
Pan Books
,
London, UK
.
26.
Nordhaus
,
W. D.
,
1992
,
Lethal Model 2: The Limits of Growth Revisited
,
Brookings Papers on Economic Activity, No. 2
,
Washington DC
.
27.
Hasan
,
S.
, and
Foliente
,
G.
,
2015
, “
Modeling Infrastructure System Interdependencies and Socioeconomic Impacts of Failure in Extreme Events: Emerging R&R Trends
,”
Nat. Hazards
,
78
(
3
), pp.
2143
2168
. 10.1007/s11069-015-1814-7
28.
Sterman
,
J.
,
2000
,
Business Dynamics: Systems Thinking and Modeling for a Complex World
,
Irwin McGraw-Hill
,
Boston, MA
.
29.
Sahely
,
H. R.
,
Kennedy
,
C. A.
, and
Adams
,
B. J.
,
2005
, “
Developing Sustainability Criteria for Urban Infrastructure Systems
,”
Can. J. Civil Eng.
,
32
(
1
), p.
72
. 10.1139/l04-072
30.
Ness
,
B.
,
Urbel-Piirsalu
,
E.
,
Anderberg
,
S.
, and
Olsson
,
L.
,
2007
, “
Categorizing Tools for Sustainability Assessment
,”
Ecol. Econ.
,
60
(
3
), pp.
498
508
. 10.1016/j.ecolecon.2006.07.023
31.
Luna-Reyes
,
L. F.
, and
Andersen
,
D. L.
,
2003
, “
Collecting and Analyzing Qualitative Data for System Dynamics: Methods and Models
,”
Syst. Dyn. Rev.
,
19
(
4
), pp.
271
296
. 10.1002/sdr.280
32.
Haimes
,
Y. Y.
,
2004
,
Risk Modeling, Assessment, and Management
, 2nd ed.,
Wiley Interscience
,
Hoboken, NJ
.
33.
Vera
,
I. A.
,
Langlois
,
L. M.
,
Rogner
,
H. H.
,
Jalal
,
A. I.
, and
Toth
,
F. L.
,
2005
,
Natural Resources Forum
, Vol.
29
,
Blackwell Publishing
,
United Nations, Malden, MA
, pp.
274
283
.
34.
Shane
,
A. M.
, and
Graedel
,
T. E.
,
2000
, “
Urban Environmental Sustainability Metrics: A Provisional Set
,”
J. Environ. Plann. Manage.
,
43
(
5
), pp.
643
663
. 10.1080/713676586
35.
Schwarz
,
J.
,
Beloff
,
B.
, and
Beaver
,
E.
,
2002
, “
Use Sustainability Metrics to Guide Decision-Making
,”
AIChe, CEP Magazine
(
July
), pp.
58
63
.
36.
Cohen
,
S.
,
Bose
,
S.
,
Guo
,
D.
,
Miller
,
A.
,
de Francia
,
K.
,
Berger
,
O.
,
Filiatraut
,
B.
,
Loman
,
M.
,
Qiu
,
W.
, and
Zhang
,
C.
,
2014
,
The Growth of Sustainability Metrics, Research Program on Sustainability Policy and Management
,
Earth Institute, Columbia University
,
NYC
.
37.
Ayres
,
R. U.
,
1996
, “
Statistical Measures of Unsustainability
,”
Ecol. Econ.
,
16
, pp.
239
255
. 10.1016/0921-8009(95)00091-7
38.
Liu
,
G.
,
2014
, “
Development of a General Sustainability Indicator for Renewable Energy Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
31
, pp.
611
621
. 10.1016/j.rser.2013.12.038
39.
Lammers
,
P. E. M.
, and
Gilbert
,
A. J.
,
1999
,
Towards Environmental Pressure Indicators for the EU: Indicator Definition
,
EUROSTAT
,
Brussels, Belgium
.
40.
Hadian
,
S.
, and
Madani
,
K.
,
2015
, “
A System of Systems Approach to Energy Sustainability Assessment: Are all Renewables Really Green
,”
Ecol. Indic.
,
52
, pp.
194
206
. 10.1016/j.ecolind.2014.11.029
41.
Santoyo-Castelazo
,
E.
, and
Azapagic
,
A.
,
2014
, “
Sustainability Assessment of Energy Systems: Integrating Environmental, Economic and Social Aspects
,”
J. Cleaner Prod.
,
80
, pp.
119
138
. 10.1016/j.jclepro.2014.05.061
42.
Cartelle Barros
,
J. J.
,
Lara Coira
,
M.
,
de la Cruz Lopez
,
M. P.
, and
del Cano Gochi
,
A.
,
2015
, “
Assessing the Global Sustainability of Different Electricity Generation Systems
,”
Energy
,
89
, pp.
473
489
. 10.1016/j.energy.2015.05.110
You do not currently have access to this content.