Abstract

City’s electricity power grid is under heavy load during on-peak hours throughout summer cooling season. As the result, many utility companies implemented the time-of-use rate of electricity leading to high electricity cost for customers with significant cooling needs. On the other hand, the need for electricity and/or cooling decreases greatly at night, creating excess electricity capacity for further utilization. An innovative ice energy storage system is being developed leveraging a unique supercooling-based ice production process. During off-peak hours, the proposed system stores the low-cost electric energy in the form of ice; during on-peak hours, the system releases the stored energy to meet extensive home cooling needs. Thus, it can not only reduce energy and cost of cooling, but also increase the penetration of renewable energies (especially wind energy). In this paper, the working principles of the system is presented along with the modeling details of the overall system and several key components. The simulink model takes in hourly temperature and peak/off peak electricity cost data to dynamically simulate the amount of energy required and associated cost for cooling an average home. Both energy consumption and cost for homes using the cooling system with ice energy storage in two US cities have been compared with those using conventional HVAC cooling system. According to the model, huge reduction in energy cost (up to 3X) can be achieved over 6 months of cooling season in regions with high peak electricity rates. While only moderate reduction on energy consumption is predicted for the ice energy storage system, further energy reduction potentials have been identified for future study.

References

References
1.
Ghoreishi-Madiseh
,
S. A.
,
Kuyuk
,
A. F.
,
Kalantari
,
H.
, and
Sasmito
,
A. P.
,
2019
, “
Ice Versus Battery Storage; a Case for Integration of Renewable Energy in Refrigeration Systems of Remote Sites
,”
Energy Procedia
,
159
, pp.
60
65
. 10.1016/j.egypro.2018.12.018
2.
Rahimi
,
A.
,
Zarghami
,
M.
,
Vaziri
,
M.
, and
Vadhva
,
S.
,
2013
, “
A Simple and Effective Approach Forpeak Load Shaving Using Battery Storage Systems
,”
Proceedings of the North American Power Symposium (NAPS)
,
Manhattan, KS
, pp.
1
5
.
3.
Chua
,
K. H.
,
Lim
,
Y. S.
, and
Morris
,
S.
,
2016
, “
Energy Storage System for Peak Shaving
,”
Int. J. Energy Sector Manage.
,
10
(
1
), pp.
3
18
. 10.1108/IJESM-01-2015-0003
4.
Sinha
,
S.
, and
Chandel
,
S.
,
2014
, “
Review of Software Tools for Hybrid Renewable Energy Systems
,”
Renew. Sustain. Energy Rev.
,
32
, pp.
192
205
. 10.1016/j.rser.2014.01.035
5.
Qiu
,
Y.
,
Colson
,
G.
, and
Wetzstein
,
M. E.
,
2017
, “
Risk Preference and Adverse Selection for Participation in Time-of-Use Electricity Pricing Programs
,”
Resour. Energy Econ.
,
47
, pp.
126
142
. 10.1016/j.reseneeco.2016.12.003
6.
Qiu
,
Y.
,
Kirkeide
,
L.
, and
Wang
,
Y. D.
,
2016
, “
Effects of Voluntary Time-of-Use Pricing on Summer Electricity Usage of Business Customers
,”
Environ. Resour. Econ.
,
69
(
2
), pp.
417
440
. 10.1007/s10640-016-0084-5
7.
Sendy
,
A.
,
2018
, “
How Will Electricity Time of Use Affect Net Metering?
On the WWW
,
Jan
. https://www.solar-estimate.org/news/
8.
Pathak
,
P. K.
, and
Gupta
,
A. R.
,
2018
, “
Battery Energy Storage System
,”
2018 4th International Conference on Computational Intelligence & Communication Technology (CICT)
,
Ghaziabad, India
, pp.
1
9
.
9.
Chen
,
H.
,
Cong
,
T. N.
,
Yang
,
W.
,
Tan
,
C.
,
Li
,
Y.
, and
Ding
,
Y.
,
2009
, “
Progress in Electrical Energy Storage System: A Critical Review
,”
Prog. Nat. Sci.
,
19
(
3
), pp.
291
312
. 10.1016/j.pnsc.2008.07.014
10.
Ghoreishi-Madiseh
,
S. A.
,
Kuyuk
,
A. F.
,
Kalantari
,
H.
, and
Sasmito
,
A. P.
,
2019
, “
Ice Versus Battery Storage; a Case for Integration of Renewable Energy in Refrigeration Systems of Remote Sites
,”
Energy Procedia
,
159
, pp.
60
65
. 10.1016/j.egypro.2018.12.018
11.
Stropnik
,
R.
,
Koželj
,
R.
,
Zavrl
,
E.
, and
Stritih
,
U.
,
2019
, “
Improved Thermal Energy Storage for Nearly Zero Energy Buildings With PCM Integration
,”
Sol. Energy
,
190
, pp.
420
426
. 10.1016/j.solener.2019.08.041
12.
Mollenhauer
,
E.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2017
, “
Increasing the Flexibility of Combined Heat and Power Plants with Heat Pumps and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020907
. 10.1115/1.4038461
13.
Nazir
,
H.
,
Batool
,
M.
,
Bolivar Osorio
,
F. J.
,
Isaza-Ruiz
,
M.
,
Xu
,
X.
,
Vignarooban
,
K.
,
Phelan
,
P.
,
Inamuddin
, and
Kanna
,
A. M.
,
2019
, “
Recent Developments in Phase Change Materials for Energy Storage Applications: A Review
,”
Int. J. Heat Mass Transf.
,
129
, pp.
491
523
. 10.1016/j.ijheatmasstransfer.2018.09.126
14.
Kamal
,
R.
,
Moloney
,
F.
,
Wickramaratne
,
C.
,
Narasimhan
,
A.
, and
Goswami
,
D. Y.
,
2019
, “
Strategic Control and Cost Optimization of Thermal Energy Storage in Buildings Using Energyplus
,”
Appl. Energy
,
246
, pp.
77
90
. 10.1016/j.apenergy.2019.04.017
15.
Dehghani-Sanij
,
A. R.
,
Tharumalingam
,
E.
,
Dusseault
,
M. B.
, and
Fraser
,
R.
,
2019
, “
Study of Energy Storage Systems and Environmental Challenges of Batteries
,”
Renew. Sustain. Energy Rev.
,
104
, pp.
192
208
. 10.1016/j.rser.2019.01.023
16.
Mengjie
,
S.
,
Liyuan
,
L.
,
Fuxin
,
N.
,
Ning
,
M.
,
Shengchun
,
L.
, and
Yanxin
,
H.
,
2018
, “
Thermal Stability Experimental Study on Three Types of Organic Binary Phase Change Materials Applied in Thermal Energy Storage System
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041018
. 10.1115/1.4039702
17.
Zhou
,
Q.
,
Du
,
D.
,
Lu
,
C.
,
He
,
Q.
, and
Liu
,
W.
,
2019
, “
A Review of Thermal Energy Storage in Compressed Air Energy Storage System
,”
Energy
,
188
, p.
115993
. 10.1016/j.energy.2019.115993
18.
Yuan
,
F.
,
Li
,
M.-J.
,
Ma
,
Z.
,
Jin
,
B.
, and
Liu
,
Z.
,
2018
, “
Experimental Study on Thermal Performance of High-Temperature Molten Salt Cascaded Latent Heat Thermal Energy Storage System
,”
Int. J. Heat Mass Transf.
,
118
, pp.
997
1011
. 10.1016/j.ijheatmasstransfer.2017.11.024
19.
Jacob
,
R.
,
Liu
,
M.
,
Sun
,
Y.
,
Belusko
,
M.
, and
Bruno
,
F.
,
2019
, “
Characterisation of Promising Phase Change Materials for High Temperature Thermal Energy Storage
,”
J. Energy Storage
,
24
, p.
100801
. 10.1016/j.est.2019.100801
20.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
,
2013
, “
Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021011
. 10.1115/1.4024143
21.
Herrmann
,
U.
, and
Kearney
,
D. W.
,
2002
, “
Survey of Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
145
152
. 10.1115/1.1467601
22.
Chirino
,
H.
, and
Xu
,
B.
,
2019
, “
Parametric Study and Sensitivity Analysis of Latent Heat Thermal Energy Storage System in Concentrated Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021006
. 10.1115/1.4042060
23.
Beghi
,
A.
,
Cecchinato
,
L.
,
Rampazzo
,
M.
, and
Simmini
,
F.
,
2014
, “
Energy Efficient Control of Hvac Systems With Ice Cold Thermal Energy Storage
,”
J. Process Control
,
24
(
6
), pp.
773
781
. 10.1016/j.jprocont.2014.01.008
24.
Bi
,
Y.
,
Yu
,
M.
,
Wang
,
H.
,
Huang
,
J.
, and
Lyu
,
T.
,
2019
, “
Experimental Investigation of Ice Melting System With Open and Closed Ice-Storage Tanks Combined Internal and External Ice Melting Processes
,”
Energy Build.
,
194
, pp.
12
20
. 10.1016/j.enbuild.2019.04.009
25.
Liu
,
S.
,
Li
,
H.
,
Song
,
M.
,
Dai
,
B.
, and
Sun
,
Z.
,
2017
, “
Impacts on the Solidification of Water on Plate Surface for Cold Energy Storage Using Ice Slurry
,”
Appl. Energy
,
227
, pp.
284
293
. 10.1016/j.apenergy.2017.08.012
26.
Sait
,
H. H.
,
2019
, “
Experimental Study of Water Solidification Phenomenon for Ice-On-Coil Thermal Energy Storage Application Utilizing Falling Film
,”
Appl. Therm. Eng.
,
146
, pp.
135
145
. 10.1016/j.applthermaleng.2018.09.116
27.
Qiao
,
Y.
,
Du
,
Y.
,
Muehlbauer
,
J.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2019
, “
Experimental Study of Enhanced Pcm Exchangers Applied in a Thermal Energy Storage System for Personal Cooling
,”
Int. J. Refrig.
,
102
, pp.
22
34
. 10.1016/j.ijrefrig.2019.03.006
28.
Fleming
,
E.
,
Wen
,
S.
,
Shi
,
L.
, and
Silva
,
A. D.
,
2013
, “
Thermodynamic Model of a Thermal Storage Air Conditioning System With Dynamic Behavior
,”
Appl. Energy
,
112
, pp.
160
169
. 10.1016/j.apenergy.2013.05.058
29.
Talukdar
,
S.
,
Afroz
,
H. M. M.
,
Hossain
,
M. A.
,
Aziz
,
M. A.
, and
Hossain
,
M. M.
,
2019
, “
Heat Transfer Enhancement of Charging and Discharging of Phase Change Materials and Size Optimization of a Latent Thermal Energy Storage System for Solar Cold Storage Application
,”
J. Energy Storage
,
24
, p.
100797
. 10.1016/j.est.2019.100797
30.
Shirazi
,
A.
,
Najafi
,
B.
,
Aminyavari
,
M.
,
Rinaldi
,
F.
, and
Taylor
,
R. A.
,
2014
, “
Thermal–economic–environmental Analysis and Multi-objective Optimization of An Ice Thermal Energy Storage System for Gas Turbine Cycle Inlet Air Cooling
,”
Energy
,
69
, pp.
212
226
. 10.1016/j.energy.2014.02.071
31.
Sanaye
,
S.
, and
Shirazi
,
A.
,
2013
, “
Thermo-economic Optimization of An Ice Thermal Energy Storage System for Air-conditioning Applications
,”
Energy Build.
,
60
,
100
109
. 10.1016/j.enbuild.2012.12.040
32.
Sun
,
Y.
,
Wang
,
S.
,
Xiao
,
F.
, and
Gao
,
D.
,
2013
, “
Peak Load Shifting Control Using Different Cold Thermal Energy Storage Facilities in Commercial Buildings: A Review
,”
Energy Convers. Manage.
,
71
, pp.
101
114
. 10.1016/j.enconman.2013.03.026
33.
Alobaid
,
F.
,
Mertens
,
N.
,
Starkloff
,
R.
,
Lanz
,
T.
,
Heinze
,
C.
, and
Epple
,
B.
,
2017
, “
Progress in Dynamic Simulation of Thermal Power Plants
,”
Prog. Energy Combust. Sci.
,
59
, pp.
101
114
. 10.1016/j.pecs.2016.11.001
34.
Crawley
,
D. B.
,
Hand
,
J. W.
,
Kummert
,
M.
, and
Griffith
,
B. T.
,
2008
, “
Contrasting the Capabilities of Building Energy Performance Simulation Programs
,”
Build. Environ.
,
43
(
4
), pp.
661
673
. 10.1016/j.buildenv.2006.10.027
35.
Bédécarrats
,
J.-P.
,
David
,
T.
, and
Castaing-Lasvignottes
,
J.
,
2010
, “
Ice Slurry Production Using Supercooling Phenomenon
,”
Int. J. Refrig.
,
33
(
1
), pp.
196
204
. 10.1016/j.ijrefrig.2009.08.012
You do not currently have access to this content.