Abstract

Photovoltaic (PV) panels are commonly used for on-site generation of electricity in urban environments, specifically on rooftops. However, their implementation on rooftops poses potential (positive and negative) impacts on the heating and cooling energy demand of buildings, and on the surrounding urban climate. The adverse consequences can be compounded if PV is installed on top of an otherwise highly reflective (“white”) rooftop. This study investigates these impacts on a test building in Tempe, AZ, by directly measuring the temperature of all involved surfaces. These measurements are supplemented by whole-building energy simulations to model the energy implications for archetypical residential and retail buildings. This includes calculations of the ratio of the energy demand penalty to electricity generation as well as the net sensible heat flux to the ambient environment. Results indicate that the summertime cooling energy penalty due to blockage of outgoing longwave radiation can be 4.9—11.2% of the PV electricity generation. The addition of PV to the white roof resulted in a small decrease in the computed sensible heat flux at night, but a daytime increase in sensible flux by more than a factor of 10 (from less than 25 W/m2 for the white roof alone, to more than 250 W/m2 when PV is added to the roof). This study highlights the potential unintended consequences of rooftop PV under certain conditions and provides a broader perspective for building designers and urban planners.

References

References
1.
IPCC
,
2018
,
Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T. (eds.)]
.
2.
Höök
,
M.
, and
Tang
,
X.
,
2013
, “
Depletion of Fossil Fuels and Anthropogenic Climate Change—A Review
,”
Energy Policy
,
52
, pp.
797
809
. 10.1016/j.enpol.2012.10.046
3.
Lefevre
,
N.
,
2010
, “
Measuring the Energy Security Implications of Fossil Fuel Resource Concentration
,”
Energy Policy
,
38
(
4
), pp.
1635
1645
. 10.1016/j.enpol.2009.02.003
4.
Healy
,
N.
, and
Barry
,
J.
,
2017
, “
Politicizing Energy Justice and Energy System Transitions: Fossil Fuel Divestment and a “Just Transition”
,”
Energy Policy
,
108
, pp.
451
459
. 10.1016/j.enpol.2017.06.014
5.
Enshaee
,
A.
, and
Enshaee
,
P.
,
2017
, “
Transmission Loss Allocation Based on Power Adjacency Matrix in Pool Electricity Markets
,”
J. Energy Eng.
,
143
(
2
), p.
04016049
. 10.1061/(ASCE)EY.1943-7897.0000403
6.
Takebayashi
,
H.
,
2015
, “
Study to Examine the Potential for Solar Energy Utilization Based on the Relationship Between Urban Morphology and Solar Radiation Gain on Building Rooftops and Wall Surfaces
,”
Sol. Energy
,
119
, pp.
362
370
. 10.1016/j.solener.2015.05.039
7.
Wani
,
C.
, and
Gupta
,
K. K.
,
2019
, “
Towards Improving the Performance of Solar Photovoltaic Energy System: A Review
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
227
, p.
022009
. 10.1088/1755-1315/227/2/022009
8.
Genchi
,
Y.
,
Ishisaki
,
M.
,
Ohashi
,
Y.
,
Kikegawa
,
Y.
,
Takahashi
,
H.
, and
Inaba
,
A.
,
2003
, “
Impacts of Large-Scale Photovoltaic Panel Installation on the Heat Island Effect in Tokyo
,”
Reprints of the 5th International Conference on Urban Climate
,
Lodz, Poland
,
Sept. 1–5
.
9.
Golden
,
J. S.
,
Carlson
,
J.
,
Kaloush
,
K. E.
, and
Phelan
,
P.
,
2007
, “
A Comparative Study of the Thermal and Radiative Impacts of Photovoltaic Canopies on Pavement Surface Temperatures
,”
Sol. Energy
,
81
(
7
), pp.
872
883
. 10.1016/j.solener.2006.11.007
10.
Masson
,
V.
,
Bonhomme
,
M.
,
Salagnac
,
J.-L.
,
Briottet
,
X.
, and
Lemonsu
,
A.
,
2014
, “
Solar Panels Reduce Both Global Warming and Urban Heat Island
,”
Front. Environ. Sci.
,
2
, p.
14
. 10.3389/fenvs.2014.00014
11.
Salamanca
,
F.
,
Georgescu
,
M.
,
Mahalov
,
A.
,
Moustaoui
,
M.
, and
Martilli
,
A.
,
2016
, “
Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand
,”
Boundary Layer Meteorol.
,
161
(
1
), pp.
203
221
. 10.1007/s10546-016-0160-y
12.
Taha
,
H.
,
2013
, “
The Potential for Air-Temperature Impact From Large-Scale Deployment of Solar Photovoltaic Arrays in Urban Areas
,”
Sol. Energy
,
91
, pp.
358
367
. 10.1016/j.solener.2012.09.014
13.
Pham
,
J. V.
,
Baniassadi
,
A.
,
Brown
,
K. E.
,
Heusinger
,
J.
, and
Sailor
,
D. J.
,
2019
,
Comparing Photovoltaic and Reflective Shade Surfaces in the Urban Environment: Effects on Surface Sensible Heat Flux and Pedestrian Thermal Comfort
,
Urban Clim
.,
29
, p.
100500
. 10.1016/j.uclim.2019.100500
14.
Scherba
,
A.
,
Sailor
,
D. J.
,
Rosenstiel
,
T. N.
, and
Wamser
,
C. C.
,
2011
, “
Modeling Impacts of Roof Reflectivity, Integrated Photovoltaic Panels and Green Roof Systems on Sensible Heat Flux Into the Urban Environment
,”
Build. Environ.
,
46
(
12
), pp.
2542
2551
. 10.1016/j.buildenv.2011.06.012
15.
Dominguez
,
A.
,
Kleissl
,
J.
, and
Luvall
,
J. C.
,
2011
, “
Effects of Solar Photovoltaic Panels on Roof Heat Transfer
,”
Sol. Energy
,
85
(
9
), pp.
2244
2255
. 10.1016/j.solener.2011.06.010
16.
Miller
,
W. A.
,
Brown
,
E.
, and
Livezey
,
R. J.
,
2004
, “
Building-Integrated Photovoltaics for Low-Slope Commercial Roofs
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
307
313
. 10.1115/1.1877514
17.
Wang
,
Y.
,
Tian
,
W.
,
Ren
,
J.
,
Zhu
,
L.
, and
Wang
,
Q.
,
2006
, “
Influence of a Building’s Integrated-Photovoltaics on Heating and Cooling Loads
,”
Appl. Energy
,
83
(
9
), pp.
989
1003
. 10.1016/j.apenergy.2005.10.002
18.
Wang
,
Y.
,
Wang
,
D.
, and
Liu
,
Y.
,
2017
, “
Study on Comprehensive Energy-Saving of Shading and Photovoltaics of Roof Added PV Module
,”
Energy Procedia
,
132
, pp.
598
603
. 10.1016/j.egypro.2017.09.672
19.
Yang
,
H.
,
Zhu
,
Z.
,
Burnett
,
J.
, and
Lu
,
L.
,
2001
,
A Simulation Study on the Energy Performance of Photovoltaic Roofs
,
ASHRAE Transactions. American Society of Heating, Refrigerating and Air Conditioning Engineers
,
Cincinnati, OH
, pp.
129
135
.
20.
ASTM
,
2012
,
ASTM Standard, in: G173-03 (Ed.), Standard Tables for Reference Solar Spectral Irradiance: Direct Normal and Hemispherical on 37
.
21.
Crawley
,
D. B.
,
Lawrie
,
L. K.
,
Winkelmann
,
F. C.
,
Buhl
,
W. F.
,
Huang
,
Y. J.
,
Pedersen
,
C. O.
,
Strand
,
R. K.
,
Liesen
,
R. J.
,
Fisher
,
D. E.
, and
Witte
,
M. J.
,
2001
, “
EnergyPlus: Creating a New-Generation Building Energy Simulation Program
,”
Energy Build.
,
33
(
4
), pp.
319
331
. 10.1016/S0378-7788(00)00114-6
22.
Witte
,
M. J.
,
Henninger
,
R. H.
,
Glazer
,
J.
, and
Crawley
,
D. B.
,
2001
, “
Testing and Validation of a New Building Energy Simulation Program
,”
Proc. Build. Simul.
,
2001
, pp.
353
360
.
23.
EIA
,
2015
,
Residential Energy Consumption Survey
,
U.S. Department of Energy
,
Washington, DC
.
24.
USCB
,
2017
,
American Housing Survey
,
United States Census Bureau
,
Washington, DC
.
25.
Hendron
,
R.
, and
Engebrecht
,
C.
,
2010
,
Building America House Simulation Protocols
.
National Renewable Energy Laboratory Golden, CO.
NREL Report/Project Number: TP-550-49426
,
79
p.
26.
Cort
,
K. A.
, and
Butner
,
R. S.
,
2012
,
An Analysis of Statewide Adoption Rates of Building Energy Code by Local Jurisdictions
.
Pacific Northwest National Laboratory
Report PNNL-21963
,
Richland, WA
.
27.
DOE
,
2017
,
EnergyPlus Documentation, Engineering Reference
,
U.S. Department of Energy
,
Washington, DC
, energyplus.net, p.
847
28.
Peng
,
C.
, and
Yang
,
J.
,
2016
, “
The Effect of Photovoltaic Panels on the Rooftop Temperature in the EnergyPlus Simulation Environment
,”
Int. J. Photoenergy
,
2016
, pp.
1
12
. 10.1155/2016/9020567
29.
Booten
,
C.
,
Kruis
,
N.
, and
Christensen
,
C.
,
2012
,
Identifying and Resolving Issues in Energyplus and DOE-2 Window Heat Transfer Calculations
,
Final Technical Report
,
National Renewable Energy Lab
Report NREL/TP-5500-55787
.
30.
Yazdanian
,
M.
, and
Klems
,
J. H.
,
1993
, “
Measurement of the Exterior Convective Film Coefficient for Windows in Low-Rise Buildings
,”
ASHRAE Trans.
,
100
, pp.
1087
1096
.
31.
Sleiman
,
M.
,
Ban-Weiss
,
G.
,
Gilbert
,
H. E.
,
Francois
,
D.
,
Berdahl
,
P.
,
Kirchstetter
,
T. W.
,
Destaillats
,
H.
, and
Levinson
,
R.
,
2011
, “
Soiling of Building Envelope Surfaces and its Effect on Solar Reflectance—Part I: Analysis of Roofing Product Databases
,”
Sol. Energy Mater. Sol. Cells
,
95
(
12
), pp.
3385
3399
. 10.1016/j.solmat.2011.08.002
32.
Ortiz
,
L. E.
,
Gonzalez
,
J. E.
,
Wu
,
W.
,
Schoonen
,
M.
,
Tongue
,
J.
, and
Bornstein
,
R.
,
2018
, “
New York City Impacts on a Regional Heat Wave
,”
J. Appl. Meteorol. Climatol.
,
57
(
4
), pp.
837
851
. 10.1175/JAMC-D-17-0125.1
33.
Takane
,
Y.
,
Kikegawa
,
Y.
,
Hara
,
M.
, and
Grimmond
,
C. S. B.
,
2019
, “
Urban Warming and Future Air Conditioning Use in an Asian Megacity: Importance of Positive Feedback
,”
npj Clim. Atmos. Sci.
,
2
(
1
), pp.
1
11
. 10.1038/s41612-019-0096-2
You do not currently have access to this content.