Abstract

The integration of variable and intermittent renewable energy generation into the power system is a grand challenge to our efforts to achieve a sustainable future. Flexible demand is one solution to this challenge, where the demand can be controlled to follow energy supply, rather than the conventional way of controlling energy supply to follow demand. Recent research has shown that electric building climate control systems like heat pumps can provide this demand flexibility by effectively storing energy as heat in the thermal mass of the building. While some forms of heat pump demand flexibility have been implemented in the form of peak pricing and utility demand response programs, controlling heat pumps to provide ancillary services like frequency regulation, load following, and reserve have yet to be widely implemented. In this paper, we review the recent advances and remaining challenges in controlling heat pumps to provide these grid services. This analysis includes heat pump and building modeling, control methods both for isolated heat pumps and heat pumps in aggregate, and the potential implications that this concept has on the power system.

References

References
1.
Shaner
,
M. R.
,
Davis
,
S. J.
,
Lewis
,
N. S.
, and
Caldeira
,
K.
,
2018
, “
Geophysical Constraints on the Reliability of Solar and Wind Power in the United States
,”
Energy Environ. Sci.
,
11
(
4
), pp.
914
925
. 10.1039/C7EE03029K
2.
Aldrich
,
R.
,
Grab
,
J.
, and
Lis
,
D.
,
2017
,
Northeast/Mid-Atlantic Air-Source Heat Pump Market Strategies Report 2016 Update
,
Northeast Energy Efficiency Partnerships
.
3.
Chua
,
K. J.
,
Chou
,
S. K.
, and
Yang
,
W. M.
,
2010
, “
Advances in Heat Pump Systems: A Review
,”
Appl. Energy
,
87
(
12
), pp.
3611
3624
. 10.1016/j.apenergy.2010.06.014
4.
Billimoria
,
S.
,
Henchen
,
M.
,
Guccione
,
L.
, and
Louis-Prescott
,
L.
,
2018
,
The Economics of Electrifying Buildings
,
Rocky Mountain Institute
,
Basalt, CO
.
5.
Chaudet
,
E.
,
2017
,
New York City's Roadmap to 80 × 50
,
New York City Mayor’s Office of Sustainability
.
6.
Arteconi
,
A.
,
Hewitt
,
N. J.
, and
Polonara
,
F.
,
2013
, “
Domestic Demand-Side Management (DSM): Role of Heat Pumps and Thermal Energy Storage (TES) Systems
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
155
165
. 10.1016/j.applthermaleng.2012.09.023
7.
Rotondo
,
J.
,
Johnson
,
R.
,
Gonzalez
,
N.
,
Waranowski
,
A.
,
Badger
,
C.
,
Lange
,
N.
,
Goldman
,
E.
, and
Foster
,
R.
,
2016
,
Overview of Existing and Future Residential Use Cases for Connected Thermostats
,
Building Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy
.
8.
Mey
,
A.
, and
Hoff
,
S.
,
2017
,
Nearly Half of All Us Electricity Customers Have Smart Meters
,
US Energy Information Administration
,
Washington, D.C
.
9.
Vrettos
,
E.
,
Kara
,
E. C.
,
MacDonald
,
J.
,
Andersson
,
G.
, and
Callaway
,
D. S.
,
2018
, “
Experimental Demonstration of Frequency Regulation by Commercial Buildings Part I: Modeling and Hierarchical Control Design
,”
IEEE Trans. Smart Grid
,
9
(
4
), pp.
3213
3223
. 10.1109/TSG.2016.2628897
10.
Vrettos
,
E.
,
Kara
,
E. C.
,
MacDonald
,
J.
,
Andersson
,
G.
, and
Callaway
,
D. S.
,
2018
, “
Experimental Demonstration of Frequency Regulation by Commercial Buildingsp Part II: Results and Performance Evaluation
,”
IEEE Trans. Smart Grid
,
9
(
4
), pp.
3224
3234
. 10.1109/TSG.2016.2628893
11.
Kim
,
Y. J.
,
Fuentes
,
E.
, and
Norford
,
L. K.
,
2016
, “
Experimental Study of Grid Frequency Regulation Ancillary Service of a Variable Speed Heat Pump
,”
IEEE Trans. Power Syst.
,
31
(
4
), pp.
3090
3099
. 10.1109/TPWRS.2015.2472497
12.
Cai
,
J.
,
Braun
,
J. E.
, and
Lin
,
Y.
,
2018
, “
Laboratory Demonstration of Variable-Speed Packaged Air-Conditioning Units for Provision of Frequency Regulation Services
,”
2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
,
Washington, DC
,
Feb. 19–22
,
IEEE
, pp.
1
5
.
13.
Fischer
,
D.
, and
Madani
,
H.
,
2017
, “
On Heat Pumps in Smart Grids: A Review
,”
Renewable Sustainable Energy Rev.
,
70
, pp.
342
357
.
14.
Kirby
,
B.
,
2016
,
Ancillary Services: Technical and Commercial Insights
,
Wärtsilä
.
15.
Zhou
,
Z.
,
Levin
,
T.
, and
Conzelmann
,
G.
,
2016
, “
Survey of U.S. Ancillary Services Markets
,”
Argone National Laboratory
,
Lemont, IL
.
16.
MacDonald
,
J.
,
Cappers
,
P.
,
Callaway
,
D.
, and
Kiliccote
,
S.
,
2012
, “
Demand Response Providing Ancillary Services
,”
Proceedings of the Grid-Interop Forum.
,
Irving, TX
,
Dec. 3–6
.
17.
Le Dréau
,
J.
, and
Heiselberg
,
P.
,
2016
, “
Energy Flexibility of Residential Buildings Using Short Term Heat Storage in the Thermal Mass
,”
Energy
,
111
, pp.
991
1002
. 10.1016/j.energy.2016.05.076
18.
Makarov
,
Y. V.
,
Reshetov
,
V. I.
, and
Stroev
,
V. A.
,
2005
, “
Blackout Prevention in the United States, Europe, and Russia
,”
Proc. IEEE
,
93
(
11
), pp.
1942
1955
. 10.1109/JPROC.2005.857486
19.
Xu
,
B.
,
Dvorkin
,
Y.
,
Kirschen
,
D. S.
,
Silva-Monroy
,
C. A.
, and
Watson
,
J.
,
2016
, “
A Comparison of Policies on the Participation of Storage in U.S. Frequency Regulation Markets
,”
2016 IEEE Power and Energy Society General Meeting (PESGM)
,
Boston, MA
,
July 17–21
, pp.
1
5
.
20.
Benner
,
S.
,
2015
, “
A Brief History of Regulation Signals at PJM
,” http://goo.gl/9UUQts
21.
Kim
,
Y. J.
, and
Wang
,
J.
,
2018
, “
Power Hardware-in-the-Loop Simulation Study on Frequency Regulation Through Direct Load Control of Thermal and Electrical Energy Storage Resources
,”
IEEE Trans. Smart Grid
,
9
(
4
), pp.
2786
2796
. 10.1109/TSG.2016.2620176
22.
Su
,
L.
, and
Norford
,
L. K.
,
2015
, “
Demonstration of HVAC Chiller Control for Power Grid Frequency Regulation Part 1: Controller Development and Experimental Results
,”
Sci. Technol. Built Environ.
,
21
(
8
), pp.
1134
1142
. 10.1080/23744731.2015.1072449
23.
FERC
,
2011
, “
Order No. 755: Frequency Regulation Compensation in the Organized Wholesale Power Markets
,”
Federal Energy Regulatory Commission (FERC)
,
WA
.
24.
PJM
,
2016
,
PJM Manual 12: Balancing Operations
,
Pennsylvania, Jersey, Maryland Power Pool
.
25.
PJM
, and
DOE
,
2012
,
Economic Dispatch and Technological Change
,
U.S. Department of Energy
,
Washington, DC
.
26.
CAISO
,
2019
,
What the duck curve tells us about managing a green grid
,
California Independent System Operator
.
27.
CAISO
,
2016
,
CAISO Flexible Ramping Product
,
California Independent System Operator
.
28.
Bajwa
,
M.
, and
Cavicchi
,
J.
,
2017
, “
Growing Evidence of Increased Frequency of Negative Electricity Prices in U.S. Wholesale Electricity Markets
,”
IAEE Energy Forum
.
29.
Eid
,
C.
,
Koliou
,
E.
,
Valles
,
M.
,
Reneses
,
J.
, and
Hakvoort
,
R.
,
2016
, “
Time-Based Pricing and Electricity Demand Response: Existing Barriers and Next Steps
,”
Utilities Policy
,
40
, pp.
15
25
. 10.1016/j.jup.2016.04.001
30.
Lin
,
Y.
,
Barooah
,
P.
,
Meyn
,
S.
, and
Middelkoop
,
T.
,
2015
, “
Experimental Evaluation of Frequency Regulation From Commercial Building HVAC Systems
,”
IEEE Trans. Smart Grid
,
6
(
2
), pp.
776
783
. 10.1109/TSG.2014.2381596
31.
Afram
,
A.
, and
Janabi-Sharifi
,
F.
,
2014
, “
Review of Modeling Methods for HVAC Systems
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
507
519
. 10.1016/j.applthermaleng.2014.03.055
32.
He
,
X.-D.
,
1996
, “
Dynamic Modeling and Multivariable Control of Vapor Compression Cycles in Air Conditioning Systems
,”
Ph.D. thesis
,
Department of Mechanical Engineering, Massachusetts Institute of Technology
,
Cambridge, MA
.
33.
Kim
,
Y.-J.
,
Norford
,
L. K.
, and
Kirtley
,
J. L.
,
2015
, “
Modeling and Analysis of a Variable Speed Heat Pump for Frequency Regulation Through Direct Load Control
,”
IEEE Trans. Power Syst.
,
30
(
1
), pp.
397
408
. 10.1109/TPWRS.2014.2319310
34.
Vrettos
,
E.
, and
Andersson
,
G.
,
2016
, “
Scheduling and Provision of Secondary Frequency Reserves by Aggregations of Commercial Buildings
,”
IEEE Trans. Sustainable Energy
,
7
(
2
), pp.
850
864
. 10.1109/TSTE.2015.2497407
35.
ASHRAE
,
2016
,
The ASHRAE Handbook: HVAC Systems and Equipment
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
.
36.
Hao
,
H.
,
Lin
,
Y.
,
Kowli
,
A. S.
,
Barooah
,
P.
, and
Meyn
,
S.
,
2014
, “
Ancillary Service to the Grid Through Control of Fans in Commercial Building Hvac Systems
,”
IEEE Trans. Smart Grid
,
5
(
4
), pp.
2066
2074
. 10.1109/TSG.2014.2322604
37.
Blum
,
D. H.
, and
Norford
,
L. K.
,
2014
, “
Dynamic Simulation and Analysis of Ancillary Service Demand Response Strategies for Variable Air Volume HVAC Systems
,”
HVAC&R Res.
,
20
(
8
), pp.
908
921
. 10.1080/10789669.2014.958975
38.
Goddard
,
G.
,
Klose
,
J.
, and
Backhaus
,
S.
,
2014
, “
Model Development and Identification for Fast Demand Response in Commercial HVAC Systems
,”
IEEE Trans. Smart Grid
,
5
(
4
), pp.
2084
2092
. 10.1109/TSG.2014.2312430
39.
Wang
,
H.
,
Wang
,
S.
, and
Tang
,
R.
,
2019
, “
Investigation on the Use of Pumps in HVAC Systems for Providing Ancillary Services in Smart Grids
,”
Energy Procedia
,
159
, pp.
219
224
. 10.1016/j.egypro.2018.12.054
40.
Lin
,
Y.
,
Barooah
,
P.
, and
Mathieu
,
J. L.
,
2017
, “
Ancillary Services Through Demand Scheduling and Control of Commercial Buildings
,”
IEEE Trans. Power Syst.
,
32
(
1
), pp.
186
197
. 10.1109/TPWRS.2016.2557764
41.
Li
,
X.
, and
Wen
,
J.
,
2014
, “
Review of Building Energy Modeling for Control and Operation
,”
Renewable Sustainable Energy Rev.
,
37
, pp.
517
537
. 10.1016/j.rser.2014.05.056
42.
Kramer
,
R.
,
van Schijndel
,
J.
, and
Schellen
,
H.
,
2012
, “
Simplified Thermal and Hygric Building Models: A Literature Review
,”
Front. Arch. Res.
,
1
(
4
), pp.
318
325
. 10.1016/j.foar.2012.09.001
43.
Cole
,
W. J.
,
Hale
,
E. T.
, and
Edgar
,
T. F.
,
2013
, “
Building Energy Model Reduction for Model Predictive Control Using Openstudio
,”
Proceeding of the 2013 American Control Conference
,
Washington, DC
,
June 17–19
, pp.
449
454
.
44.
Crawley
,
D. B.
,
Pedersen
,
C. O.
,
Lawrie
,
L. K.
, and
Winkelmann
,
F. C.
,
2000
, “
Energyplus: Energy Simulation Program
,”
ASHRAE J.
,
42
(
4
), pp.
49
56
.
45.
Eisenhower
,
B.
,
O’Neill
,
Z.
,
Narayanan
,
S.
,
Fonoberov
,
V. A.
, and
Mezić
,
I.
,
2012
, “
A Methodology for Meta-Model Based Optimization in Building Energy Models
,”
Energy Buildings
,
47
, pp.
292
301
. 10.1016/j.enbuild.2011.12.001
46.
Blum
,
D. H.
,
Arendt
,
K.
,
Rivalin
,
L.
,
Piette
,
M. A.
,
Wetter
,
M.
, and
Veje
,
C. T.
,
2019
, “
Practical Factors of Envelope Model Setup and Their Effects on the Performance of Model Predictive Control for Building Heating, Ventilating, and Air Conditioning Systems
,”
Appl. Energy
,
236
, pp.
410
425
. 10.1016/j.apenergy.2018.11.093
47.
Wang
,
D.
,
Parkinson
,
S.
,
Miao
,
W.
,
Jia
,
H.
,
Crawford
,
C.
, and
Djilali
,
N.
,
2013
, “
Hierarchical Market Integration of Responsive Loads as Spinning Reserve
,”
Appl. Energy
,
104
, pp.
229
238
. 10.1016/j.apenergy.2012.10.054
48.
Finck
,
C.
,
Li
,
R.
,
Kramer
,
R.
, and
Zeiler
,
W.
,
2018
, “
Quantifying Demand Flexibility of Power-to-Heat and Thermal Energy Storage in the Control of Building Heating Systems
,”
Appl. Energy
,
209
, pp.
409
425
. 10.1016/j.apenergy.2017.11.036
49.
Alimohammadisagvand
,
B.
,
Jokisalo
,
J.
,
Kilpeläinen
,
S.
,
Ali
,
M.
, and
Sirén
,
K.
,
2016
, “
Cost-Optimal Thermal Energy Storage System for a Residential Building With Heat Pump Heating and Demand Response Control
,”
Appl. Energy
,
174
, pp.
275
287
. 10.1016/j.apenergy.2016.04.013
50.
De Gracia
,
A.
, and
Cabeza
,
L. F.
,
2015
, “
Phase Change Materials and Thermal Energy Storage for Buildings
,”
Energy Buildings
,
103
, pp.
414
419
. 10.1016/j.enbuild.2015.06.007
51.
Al-Saadi
,
S. N.
, and
Zhai
,
Z.
,
2013
, “
Modeling Phase Change Materials Embedded in Building Enclosure: A Review
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
659
673
. 10.1016/j.rser.2013.01.024
52.
Vandermeulen
,
A.
,
van der Heijde
,
B.
, and
Helsen
,
L.
,
2018
, “
Controlling District Heating and Cooling Networks to Unlock Flexibility: A Review
,”
Energy
,
151
, pp.
103
115
. 10.1016/j.energy.2018.03.034
53.
Callaway
,
D. S.
,
2009
, “
Tapping the Energy Storage Potential in Electric Loads to Deliver Load Following and Regulation, With Application to Wind Energy
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1389
1400
. 10.1016/j.enconman.2008.12.012
54.
Bashash
,
S.
, and
Fathy
,
H. K.
,
2011
, “
Modeling and Control Insights Into Demand-Side Energy Management Through Setpoint Control of Thermostatic Loads
,”
Proceedings of the 2011 American Control Conference
,
San Francisco, CA
,
June 29–July 1
, pp.
4546
4553
.
55.
Hughes
,
J. T.
,
Domínguez-García
,
A. D.
, and
Poolla
,
K.
,
2016
, “
Identification of Virtual Battery Models for Flexible Loads
,”
IEEE Trans. Power Syst.
,
31
(
6
), pp.
4660
4669
. 10.1109/TPWRS.2015.2505645
56.
Zhao
,
L.
,
Zhang
,
W.
,
Hao
,
H.
, and
Kalsi
,
K.
,
2017
, “
A Geometric Approach to Aggregate Flexibility Modeling of Thermostatically Controlled Loads
,”
IEEE Trans. Power Syst.
,
32
(
6
), pp.
4721
4731
. 10.1109/TPWRS.2017.2674699
57.
Hao
,
H.
,
Sanandaji
,
B. M.
,
Poolla
,
K.
, and
Vincent
,
T. L.
,
2015
, “
Aggregate Flexibility of Thermostatically Controlled Loads
,”
IEEE Trans. Power Syst.
,
30
(
1
), pp.
189
198
. 10.1109/TPWRS.2014.2328865
58.
Oldewurtel
,
F.
,
Borsche
,
T.
,
Bucher
,
M.
,
Fortenbacher
,
P.
,
Haring
,
M. G. V. T.
,
Mathieu
,
J. L.
,
Megel
,
O.
,
Vrettos
,
E.
, and
Andersson
,
G.
,
2013
, “
A Framework for and Assessment of Demand Response and Energy Storage in Power Systems
,”
IREP Symposium: Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid, IREP
,
Rethymnon, Greece
,
Aug. 25–30
, pp.
1
24
. http://dx.doi.org/10.1109.irep.2013.6629419
59.
Bashash
,
S.
, and
Fathy
,
H. K.
,
2013
, “
Modeling and Control of Aggregate Air Conditioning Loads for Robust Renewable Power Management
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1318
1327
. 10.1109/TCST.2012.2204261
60.
Tindemans
,
S. H.
,
Trovato
,
V.
, and
Strbac
,
G.
,
2015
, “
Decentralized Control of Thermostatic Loads for Flexible Demand Response
,”
IEEE Trans. Control Syst. Technol.
,
23
(
5
), pp.
1685
1700
. 10.1109/TCST.2014.2381163
61.
Perfumo
,
C.
,
Kofman
,
E.
,
Braslavsky
,
J. H.
, and
Ward
,
J. K.
,
2012
, “
Load Management: Model-Based Control of Aggregate Power for Populations of Thermostatically Controlled Loads
,”
Energy Convers. Manage.
,
55
, pp.
36
48
. 10.1016/j.enconman.2011.10.019
62.
Papadakis
,
G.
,
Ruiz
,
N.
, and
Cobelo
,
I.
,
2009
, “
A Direct Load Control Model for Virtual Power Plant Management
,”
IEEE Trans. Power Syst.
,
24
(
2
), pp.
959
966
. 10.1109/TPWRS.2009.2016607
63.
Mathieu
,
J. L.
,
Koch
,
S.
, and
Callaway
,
D. S.
,
2013
, “
State Estimation and Control of Electric Loads to Manage Real-Time Energy Imbalance
,”
IEEE Trans. Power Syst.
,
28
(
1
), pp.
430
440
. 10.1109/TPWRS.2012.2204074
64.
Mahdavi
,
N.
,
Braslavsky
,
J. H.
, and
Perfumo
,
C.
,
2018
, “
Mapping the Effect of Ambient Temperature on the Power Demand of Populations of Air Conditioners
,”
IEEE Trans. Smart Grid
,
9
(
3
), pp.
1540
1550
. 10.1109/TSG.2016.2592522
65.
Koch
,
S.
,
Mathieu
,
J. L.
, and
Callaway
,
D. S.
,
2011
, “
Modeling and Control of Aggregated Heterogeneous Thermostatically Controlled Loads for Ancillary Services
,”
17th Power Systems Computation Conference.
,
Stockholm
,
Aug. 22–26
, pp.
1
7
.
66.
Chertkov
,
M.
, and
Chernyak
,
V.
,
2017
, “
Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach
,”
Sci. Rep.
,
7
(
1
), pp.
1
9
. 10.1038/s41598-017-07462-8
67.
Chang
,
C. Y.
,
Zhang
,
W.
,
Lian
,
J.
, and
Kalsi
,
K.
,
2013
, “
Modeling and Control of Aggregated Air Conditioning Loads Under Realistic Conditions
,”
2013 IEEE PES Innovative Smart Grid Technologies Conference
,
Washington, DC
,
Feb. 24–28
, pp.
1
10
.
68.
Rodríguez
,
L. R.
,
Brennenstuhl
,
M.
,
Yadack
,
M.
,
Boch
,
P.
, and
Eicker
,
U.
,
2019
, “
Heuristic Optimization of Clusters of Heat Pumps: A Simulation and Case Study of Residential Frequency Reserve
,”
Appl. Energy
,
233–234
, pp.
943
958
. 10.1016/j.apenergy.2018.09.103
69.
Korn
,
D.
,
Walczyk
,
J.
,
Jackson
,
A.
,
Machado
,
A.
,
Kongoletos
,
J.
, and
Pfann
,
E.
,
2016
,
Ductless Mini-Split Heat Pump Impact Evaluation
,
Cadmus
,
Boston, MA
.
70.
Chen
,
H.
,
Baker
,
S.
,
Benner
,
S.
,
Berner
,
A.
, and
Liu
,
J.
,
2017
, “
PJM Integrates Energy Storage: Their Technologies and Wholesale Products
,”
IEEE Power Energy Mag.
,
15
(
5
), pp.
59
67
. 10.1109/MPE.2017.2708861
71.
Zhang
,
W.
,
Lian
,
J.
,
Chang
,
C.-Y.
, and
Kalsi
,
K.
,
2013
, “
Aggregated Modeling and Control of Air Conditioning Loads for Demand Response
,”
IEEE Trans. Power Syst.
,
28
(
4
), pp.
4655
4664
. 10.1109/TPWRS.2013.2266121
72.
Vrettos
,
E.
,
Oldewurtel
,
F.
, and
Andersson
,
G.
,
2016
, “
Robust Energy-Constrained Frequency Reserves From Aggregations of Commercial Buildings
,”
IEEE Trans. Power Syst.
,
31
(
6
), pp.
4272
4285
. 10.1109/TPWRS.2015.2511541
73.
Hao
,
H.
,
Sanandaji
,
B. M.
,
Poolla
,
K.
, and
Vincent
,
T. L.
,
2014
, “
Frequency Regulation From Flexible Loads: Potential, Economics, and Implementation
,”
Proceeding of the 2014 American Control Conference
,
Portland, OR
,
June 4–6
, pp.
65
72
.
74.
Ledva
,
G. S.
,
Vrettos
,
E.
,
Mastellone
,
S.
,
Andersson
,
G.
, and
Mathieu
,
J. L.
,
2018
, “
Managing Communication Delays and Model Error in Demand Response for Frequency Regulation
,”
IEEE Trans. Power Syst.
,
33
(
2
), pp.
1299
1308
. 10.1109/TPWRS.2017.2725834
75.
Afram
,
A.
, and
Janabi-Sharifi
,
F.
,
2014
, “
Theory and Applications of HVAC Control Systems—A Review of Model Predictive Control (MPC)
,”
Building Environ.
,
72
, pp.
343
355
. 10.1016/j.buildenv.2013.11.016
76.
Maasoumy
,
M.
,
Rosenberg
,
C.
,
Sangiovanni-Vincentelli
,
A.
, and
Callaway
,
D. S.
,
2014
, “
Model Predictive Control Approach to Online Computation of Demand-Side Flexibility of Commercial Buildings HVAC Systems for Supply Following
,”
Proceedings of the 2014 American Control Conference
,
Portland, OR
,
June 4–6
, pp.
1082
1089
.
77.
Yuan
,
S.
, and
Perez
,
R.
,
2006
, “
Multiple-Zone Ventilation and Temperature Control of a Single-Duct VAV System Using Model Predictive Strategy
,”
Energy Buildings
,
38
(
10
), pp.
1248
1261
. 10.1016/j.enbuild.2006.03.007
78.
Henze
,
G. P.
,
Kalz
,
D. E.
,
Liu
,
S.
, and
Felsmann
,
C.
,
2005
, “
Experimental Analysis of Model-Based Predictive Optimal Control for Active and Passive Building Thermal Storage Inventory
,”
HVAC&R Res.
,
11
(
2
), pp.
189
213
. 10.1080/10789669.2005.10391134
79.
Florita
,
A. R.
, and
Henze
,
G. P.
,
2009
, “
Comparison of Short-Term Weather Forecasting Models for Model Predictive Control
,”
HVAC&R Res.
,
15
(
5
), pp.
835
853
. 10.1080/10789669.2009.10390868
80.
Lee
,
Z. E.
,
Gupta
,
K.
,
Kircher
,
K. J.
, and
Zhang
,
K. M.
,
2019
, “
Mixed-Integer Model Predictive Control of Variable-Speed Heat Pumps
,”
Energy Buildings
,
198
, pp.
75
83
. 10.1016/j.enbuild.2019.05.060
81.
Junker
,
R. G.
,
Azar
,
A. G.
,
Lopes
,
R. A.
,
Lindberg
,
K. B.
,
Reynders
,
G.
,
Relan
,
R.
, and
Madsen
,
H.
,
2018
, “
Characterizing the Energy Flexibility of Buildings and Districts
,”
Appl. Energy
,
225
, pp.
175
182
. 10.1016/j.apenergy.2018.05.037
82.
Ziras
,
C.
,
Heinrich
,
C.
,
Pertl
,
M.
, and
Bindner
,
H. W.
,
2019
, “
Experimental Flexibility Identification of Aggregated Residential Thermal Loads Using Behind-the-Meter Data
,”
Appl. Energy
,
242
, pp.
1407
1421
. 10.1016/j.apenergy.2019.03.156
83.
Diekerhof
,
M.
,
Peterssen
,
F.
, and
Monti
,
A.
,
2018
, “
Hierarchical Distributed Robust Optimization for Demand Response Services
,”
IEEE Trans. Smart Grid
,
9
(
6
), pp.
6018
6029
. 10.1109/TSG.2017.2701821
84.
Zhu
,
Q.
,
Jiang
,
L.
,
Yao
,
W.
,
Zhang
,
C.-K.
, and
Luo
,
C.
,
2017
, “
Robust Load Frequency Control With Dynamic Demand Response for Deregulated Power Systems Considering Communication Delays
,”
Electric Power Compon. Syst.
,
45
(
1
), pp.
75
87
. 10.1080/15325008.2016.1233300
85.
Campi
,
M. C.
,
Garatti
,
S.
, and
Ramponi
,
F. A.
,
2018
, “
A General Scenario Theory for Nonconvex Optimization and Decision Making
,”
IEEE Trans. Automat. Control
,
63
(
12
), pp.
4067
4078
. 10.1109/TAC.2018.2808446
86.
Zhang
,
X.
,
Schildbach
,
G.
,
Sturzenegger
,
D.
, and
Morari
,
M.
,
2018
, “
Scenario-Based MPC for Energy-Efficient Building Climate Control Under Weather and Occupancy Uncertainty
,”
2013 European Control Conference (ECC)
,
Zurich
,
July 17–19
, pp.
1029
1034
.
87.
Ottesen
,
S. O.
, and
Tomasgard
,
A.
,
2015
, “
A Stochastic Model for Scheduling Energy Flexibility in Buildings
,”
Energy
,
88
, pp.
364
376
. 10.1016/j.energy.2015.05.049
88.
Gao
,
Y.
,
Li
,
S.
, and
Lin
,
B.
,
2019
, “
Economic and Hierarchical Control Multi-thermal Load for Bidding Ancillary Service
,”
Clemson University Power Systems Conference, PSC
,
Charleston
,
Sept. 4–7
, pp.
1
5
. http://dx.doi.org/10.1109/psc.2018.8664034
89.
Wu
,
X.
,
Member
,
S.
,
He
,
J.
,
Xu
,
Y.
,
Lu
,
J.
,
Member
,
S.
,
Lu
,
N.
,
Member
,
S.
, and
Wang
,
X.
,
2018
, “
Hierarchical Control of Residential HVAC Units for Primary Frequency Regulation
,”
IEEE Trans. Smart Grid
,
9
(
4
), pp.
3844
3856
. 10.1109/TSG.2017.2766880
90.
Schirrer
,
A.
,
Konig
,
O.
,
Ghaemi
,
S.
,
Kupzog
,
F.
, and
Kozek
,
M.
,
2013
, “
Hierarchical Application of Model-Predictive Control for Efficient Integration of Active Buildings Into Low Voltage Grids
,”
2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems
,
Berkeley
,
May 20
, pp.
2
7
.
91.
Wei
,
W.
,
Wang
,
D.
,
Jia
,
H.
,
Wang
,
C.
,
Zhang
,
Y.
, and
Fan
,
M.
,
2017
, “
Hierarchical and Distributed Demand Response Control Strategy for Thermostatically Controlled Appliances in Smart Grid
,”
J. Modern Power Syst. Clean Energy
,
5
(
1
), pp.
30
42
. 10.1007/s40565-016-0255-y
92.
Beil
,
I.
,
Hiskens
,
I.
, and
Backhaus
,
S.
,
2015
, “
Round-Trip Efficiency of Fast Demand Response in a Large Commercial Air Conditioner
,”
Energy Buildings
,
97
, pp.
47
55
. 10.1016/j.enbuild.2015.03.028
93.
Beil
,
I.
,
Hiskens
,
I.
, and
Backhaus
,
S.
,
2016
, “
Frequency Regulation From Commercial Building HVAC Demand Response
,”
Proc. IEEE
,
104
(
4
), pp.
745
757
. 10.1109/JPROC.2016.2520640
94.
Mathieu
,
J. L.
,
Dyson
,
M. E.
, and
Callaway
,
D. S.
,
2015
, “
Resource and Revenue Potential of California Residential Load Participation in Ancillary Services
,”
Energy Policy
,
80
, pp.
76
87
. 10.1016/j.enpol.2015.01.033
95.
Kohlhepp
,
P.
,
Harb
,
H.
,
Wolisz
,
H.
,
Waczowicz
,
S.
,
Müller
,
D.
, and
Hagenmeyer
,
V.
,
2019
, “
Large-Scale Grid Integration of Residential Thermal Energy Storages as Demand-Side Flexibility Resource: A Review of International Field Studies
,”
Renewable Sustainable Energy Rev.
,
101
, pp.
527
547
. 10.1016/j.rser.2018.09.045
96.
Kintner-Meyer
,
M.
,
Balducci
,
P.
,
Colella
,
W.
,
Elizondo
,
M.
,
Jin
,
C.
,
Nguyen
,
T.
,
Viswanathan
,
V.
, and
Zhang
,
Y.
,
2013
, “
National Assessment of EnergyStorage for Grid Balancing and Arbitrage
,”
Pacific Northwest National Laboratory
,
Richland, WA
.
97.
Hammerstrom
,
D. J.
,
Ambrosio
,
R.
,
Carlon
,
T. A.
,
DeSteese
,
J. G.
,
Horst
,
G. R.
,
Kajfasz
,
R.
,
Kiesling
,
L. L.
,
Michie
,
P.
,
Pratt
,
R. G.
,
Yao
,
M.
,
Brous
,
J.
,
Chassin
,
D. P.
,
Guttromson
,
R. T.
,
Jarvegren
,
O. M.
,
Katipamula
,
S.
,
Le
,
N. T.
,
Oliver
,
T. V.
, and
Thompson
,
S. E.
,
2008
, “
Pacific Northwest GridWise™ Testbed Demonstration Projects; Part I. Olympic Peninsula Project
,”
Pacific Northwest National Laboratory
,
Richland, WA
.
98.
Keskar
,
A.
,
Anderson
,
D.
,
Johnson
,
J. X.
,
Hiskens
,
I. A.
, and
Mathieu
,
J. L.
,
2019
, “
Do Commercial Buildings Become Less Efficient When They Provide Grid Ancillary Services?
Energy Efficiency
,
12
(
4
), pp.
1
15
. 10.1007/s12053-019-09787-x
99.
Lin
,
Y.
,
Mathieu
,
J. L.
,
Johnson
,
J. X.
,
Hiskens
,
I. A.
, and
Backhaus
,
S.
,
2017
, “
Explaining Inefficiencies in Commercial Buildings Providing Power System Ancillary Services
,”
Energy Buildings
,
152
, pp.
216
226
. 10.1016/j.enbuild.2017.07.042
100.
Raman
,
N. S.
, and
Barooah
,
P.
,
2019
, “
On the Round-Trip Efficiency of an HVAC-Based Virtual Battery
,”
IEEE Trans. Smart Grid
,
11
(
1
), pp.
1
8
. 10.1109/TSG.2019.2923588
101.
Hao
,
H.
,
Sanandaji
,
B. M.
,
Poolla
,
K.
, and
Vincent
,
T. L.
,
2015
, “
Potentials and Economics of Residential Thermal Loads Providing Regulation Reserve
,”
Energy Policy
,
79
, pp.
115
126
. 10.1016/j.enpol.2015.01.013
102.
Yoon
,
J. H.
,
Baldick
,
R.
, and
Novoselac
,
A.
,
2014
, “
Dynamic Demand Response Controller Based on Real-Time Retail Price for Residential Buildings
,”
IEEE Trans. Smart Grid
,
5
(
1
), pp.
121
129
. 10.1109/TSG.2013.2264970
103.
Blum
,
D. H.
,
Zakula
,
T.
, and
Norford
,
L. K.
,
2016
, “
Opportunity Cost Quantification for Ancillary Services Provided by Heating, Ventilating, and Air-Conditioning Systems
,”
IEEE Trans. Smart Grid
,
8
(
3
), pp.
1264
1273
. 10.1109/TSG.2016.2582207
104.
CAISO
,
2016
,
Q1 2016 Report on Market Issues and Performance
,
California Independent System Operator
.
105.
Cai
,
J.
, and
Braun
,
J. E.
,
2019
, “
Laboratory-Based Assessment of HVAC Equipment for Power Grid Frequency Regulation: Methods, Regulation Performance, Economics, Indoor Comfort and Energy Efficiency
,”
Energy Buildings
,
185
, pp.
148
161
. 10.1016/j.enbuild.2018.12.022
106.
Posma
,
J.
,
Lampropoulos
,
I.
,
Schram
,
W.
, and
van Sark
,
W.
,
2019
, “
Provision of Ancillary Services From an Aggregated Portfolio of Residential Heat Pumps on the Dutch Frequency Containment Reserve Market
,”
Appl. Sci.
,
9
(
4
), pp.
590
606
. 10.3390/app9030590
You do not currently have access to this content.