Abstract

This paper develops means to analyze and cluster residential households into homogeneous groups based on the electricity load. Classifying customers by electricity load profiles is a top priority for retail electric providers (REPs), so they can plan and conduct demand response (DR) effectively. We present a practical method to identify the most DR-profitable customer groups as opposed to tailoring DR programs for each separate household, which may be computationally prohibitive. Electricity load data of 10,000 residential households from 2017 located in Texas was used. The study proposed the clustered load-profile method (CLPM) to classify residential customers based on their electricity load profiles in combination with a dynamic program for DR scheduling to optimize DR profits. The main conclusions are that the proposed approach has an average 2.3% profitability improvement over a business-as-usual heuristic. In addition, the proposed method on average is approximately 70 times faster than running the DR dynamic programming separately for each household. Thus, our method not only is an important application to provide computational business insights for REPs and other power market participants but also enhances resilience for power grid with an advanced DR scheduling tool.

References

1.
Hu
,
M.
,
Xiao
,
F.
, and
Wang
,
L.
,
2017
, “
Investigation of Demand Response Potentials of Residential Air Conditioners in Smart Grids Using Grey-Box Room Thermal Model
,”
Appl. Energy
,
207
, pp.
324
335
. 10.1016/j.apenergy.2017.05.099
2.
Piette
,
M. A.
,
Ghatikar
,
G.
,
Kiliccote
,
S.
,
Watson
,
D.
,
Koch
,
E.
, and
Hennage
,
D.
,
2009
, “
Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021004
. 10.1115/1.3130788
3.
Singer
,
J.
,
Roth
,
T.
,
Wang
,
C.
,
Nguyen
,
C.
, and
Lee
,
H.
,
2019
, “
EnergyPlus Integration Into Cosimulation Environment to Improve Home Energy Saving Through Cyber-Physical Systems Development
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062001
. 10.1115/1.4042224
4.
EIA
,
2018
, “
Electric Power Annual 2017
,”
Energy Information Administration, U.S. Department of Energy
,
Washington, DC
.
5.
Malik
,
A.
,
Haghdadi
,
N.
,
MacGill
,
I.
, and
Ravishankar
,
J.
,
2019
, “
Appliance Level Data Analysis of Summer Demand Reduction Potential From Residential Air Conditioner Control
,”
Appl. Energy
,
235
, pp.
776
785
. 10.1016/j.apenergy.2018.11.010
6.
Siano
,
P.
,
2014
, “
Demand Response and Smart Grids—A Survey
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
461
478
. 10.1016/j.rser.2013.10.022
7.
Addy
,
N. J.
,
Kiliccote
,
S.
,
Callaway
,
D. S.
, and
Mathieu
,
J. L.
,
2014
, “
How Baseline Model Implementation Choices Affect Demand Response Assessments
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021008
. 10.1115/1.4028478
8.
Docimo
,
D.
, and
Fathy
,
H. K.
,
2017
, “
Demand Response Using Heterogeneous Thermostatically Controlled Loads: Characterization of Aggregate Power Dynamics
,”
J. Dyn. Syst. Meas. Contr.
,
139
(
10
), p.
6
.
101009
. 10.1115/1.4036557
9.
Räsänen
,
T.
,
Voukantsis
,
D.
,
Niska
,
H.
,
Karatzas
,
K.
, and
Kolehmainen
,
M.
,
2010
, “
Data-Based Method for Creating Electricity Use Load Profiles Using Large Amount of Customer-Specific Hourly Measured Electricity Use Data
,”
Appl. Energy
,
87
(
11
), pp.
3538
3545
. 10.1016/j.apenergy.2010.05.015
10.
Park
,
L.
,
Jang
,
Y.
,
Cho
,
S.
, and
Kim
,
J.
,
2017
, “
Residential Demand Response for Renewable Energy Resources in Smart Grid Systems
,”
IEEE Trans. Ind. Inf.
,
13
(
6
), pp.
3165
3173
. 10.1109/TII.2017.2704282
11.
Thornton
,
M.
,
Motalleb
,
M.
,
Smidt
,
H.
,
Branigan
,
J.
,
Siano
,
P.
, and
Ghorbani
,
R.
,
2018
, “
Internet-of-Things Hardware-in-the-Loop Simulation Architecture for Providing Frequency Regulation With Demand Response
,”
IEEE Trans. Ind. Inf.
,
14
(
11
), pp.
5020
5028
. 10.1109/TII.2017.2782885
12.
Paterakis
,
N. G.
,
Erdinç
,
O.
,
Bakirtzis
,
A. G.
, and
Catalão
,
J. P. S.
,
2015
, “
Optimal Household Appliances Scheduling Under Day-Ahead Pricing and Load-Shaping Demand Response Strategies
,”
IEEE Trans. Ind. Inf.
,
11
(
6
), pp.
1509
1519
. 10.1109/TII.2015.2438534
13.
Safdarian
,
A.
,
Fotuhi-Firuzabad
,
M.
, and
Lehtonen
,
M.
,
2014
, “
A Distributed Algorithm for Managing Res-Idential Demand Response in Smart Grids
,”
IEEE Trans. Ind. Inf.
,
10
(
4
), pp.
2385
2393
. 10.1109/TII.2014.2316639
14.
Vardakas
,
J. S.
,
Zorba
,
N.
, and
Verikoukis
,
C. V.
,
2015
, “
A Survey on Demand Response Programs in Smart Grids: Pricing Methods and Optimization Algorithms
,”
IEEE Commun. Surv. Tutorials
,
17
(
1
), pp.
152
178
. 10.1109/COMST.2014.2341586
15.
Taft
,
J.
,
2017
, “
Electric Grid Resilience and Reliability for Grid Architecture
,”
Pacific Northwest National Laboratory
,
Report No. PNNL-26623
.
16.
Electric Reliability Council of Texas
, “
Market Prices
,” http://www.ercot.com/mktinfo/prices, Accessed August 1, 2019.
17.
Blohm
,
A.
,
Crawford
,
J.
, and
Gabriel
,
S. A.
,
2019
, “
Demand Response as a Risk-Reduction Measure for Retail Electricity Providers: ERCOT Market Case Study
,”
(submitted)
.
18.
Kilkki
,
O.
,
Alahäivälä
,
A.
, and
Seilonen
,
I.
,
2015
, “
Optimized Control of Price-Based Demand Response With Electric Storage Space Heating
,”
IEEE Transactions on Industrial Informatics
,
11
(
1
), pp.
281
288
. 10.1109/TII.2014.2342032
19.
Lossin
,
F.
,
Loder
,
A.
, and
Staake
,
T.
,
2014
, “
Energy Informatics for Behavioral Change
,”
Comput. Sci. Res. Dev.
,
31
(
3
), pp.
149
155
. 10.1007/s00450-014-0295-3
20.
McLoughlin
,
F.
,
Duffy
,
A.
, and
Conlon
,
M.
,
2015
, “
A Clustering Approach to Domestic Electricity Load Profile Characterisation Using Smart Metering Data
,”
Appl. Energy
,
141
, pp.
190
199
. 10.1016/j.apenergy.2014.12.039
21.
Chicco
,
G.
,
Napoli
,
R.
,
Piglione
,
F.
,
Postolache
,
P.
,
Scutariu
,
M.
, and
Toader
,
C.
,
2004
, “
Load Pattern-Based Classification of Electricity Customers
,”
IEEE Trans. Power Syst.
,
19
(
2
), pp.
1232
1239
. 10.1109/TPWRS.2004.826810
22.
Granell
,
R.
,
Axon
,
C. J.
, and
Wallom
,
D. C. H.
,
2015
, “
Impacts of Raw Data Temporal Resolution Using Se-Lected Clustering Methods on Residential Electricity Load Profiles
,”
IEEE Trans. Power Syst.
,
30
(
6
), pp.
3217
3224
. 10.1109/TPWRS.2014.2377213
23.
Bhattarai
,
B. P.
,
Lévesque
,
M.
,
Bak-Jensen
,
B.
,
Pillai
,
J. R.
,
Maier
,
M.
,
Tipper
,
D.
, and
Myers
,
K. S.
,
2017
, “
Design and Cosimulation of Hierarchical Architecture for Demand Response Control and Coordination
,”
IEEE Trans. Ind. Inf.
,
13
(
4
), pp.
1806
1816
. 10.1109/TII.2016.2634582
24.
Faria
,
P.
,
Spínola
,
J.
, and
Vale
,
Z.
,
2016
, “
Aggregation and Remuneration of Electricity Consumers and Producers for the Definition of Demand-Response Programs
,”
IEEE Trans. Ind. Inf.
,
12
(
3
), pp.
952
961
. 10.1109/TII.2016.2541542
25.
Elghitani
,
F.
, and
El-Saadany
,
E.
,
2019
, “
Smoothing Net Load Demand Variations Using Residential De-Mand Management
,”
IEEE Trans. Ind. Inf.
,
15
(
1
), pp.
390
398
. 10.1109/TII.2018.2852482
26.
Moglen
,
R.
,
Chanpiwat
,
P.
,
Gabriel
,
S. A.
, and
Blohm
,
A.
,
2019
, “
A Dynamic Programming Approach to Optimal Residential Demand Response Scheduling in Near Real-Time: Application for Electricity Retailers in ERCOT Power Markets
,” (
submitted
).
27.
Moglen
,
R. L.
,
2019
, “
Optimal Scheduling of Residential Demand Response Using Dynamic Programming
,”
Thesis
,
University of Maryland
,
College Park, MD
.
28.
Siemann
,
M.
,
2018
, “
Whisker Labs: Residential Electricity Load Data Set
,” https://www.whiskerlabs.com/, Accessed August 1, 2018.
29.
Siemann
,
M. J.
,
2013
. “
Performance and Applications of Residential Building Energy Grey-Box Models
,”
Ph.D. dissertation
,
University of Maryland
,
College Park, MD
.
30.
Florita
,
A. R.
,
Brackney
,
L. J.
,
Otanicar
,
T. P.
, and
Robertson
,
J.
,
2013
, “
Classification of Commercial Building Electrical Demand Profiles for Energy Storage Applications
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031020
. 10.1115/1.4024029
31.
Kaufman
,
L.
, and
Rousseeuw
,
P. J.
,
2005
,
Finding Groups in Data: An Introduction to Cluster Analysis
,
Wiley
,
New York
.
32.
Tsekouras
,
G. J.
,
Hatziargyriou
,
N. D.
, and
Dialynas
,
E. N.
,
2007
, “
Two-Stage Pattern Recognition of Load Curves for Classification of Electricity Customers
,”
IEEE Trans. Power Syst.
,
22
(
3
), pp.
1120
1128
. 10.1109/TPWRS.2007.901287
33.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J. H.
,
2017
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer
,
New York
.
34.
Sokolova
,
A.
, and
Aksanli
,
B.
,
2019
, “
Demographical Energy Usage Analysis of Residential Buildings
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062003
. 10.1115/1.4042451
35.
Moreno-Tejera
,
S.
,
Silva-Pérez
,
M. A.
,
Ramírez-Santigosa
,
L.
, and
Lillo-Bravo
,
I.
,
2017
, “
Classification of Days According to DNI Profiles Using Clustering Techniques
,”
Sol. Energy
,
146
, pp.
319
333
. 10.1016/j.solener.2017.02.031
36.
Kamwa
,
I.
,
Pradhan
,
A. K.
,
Joos
,
G.
, and
Samantaray
,
S. R.
,
2009
, “
Fuzzy Partitioning of a Real Power System for Dynamic Vulnerability Assessment
,”
IEEE Trans. Power Syst.
,
24
(
3
), pp.
1356
1365
. 10.1109/TPWRS.2009.2021225
37.
Kaci
,
A.
,
Kamwa
,
I.
,
Dessaint
,
L.
, and
Guillon
,
S.
,
2014
, “
Synchrophasor Data Baselining and Mining for Online Monitoring of Dynamic Security Limits
,”
IEEE Trans. Power Syst.
,
29
(
6
), pp.
2681
2695
. 10.1109/TPWRS.2014.2312418
38.
Mohibullah
,
M.
,
Hossain
,
M.
, and
Hasan
,
M.
,
2015
, “
Comparison of Euclidean Distance Function and Manhattan Distance Function Using K-Mediods
,”
Int. J. Comput. Sci. Inf. Secur.
,
13
(
10
), pp.
61
71
. 10.1016/j.rser.2018.04.037
39.
Kassambara
,
A.
, “
Determining the Optimal Number of Clusters: 3 Must Know Methods
,” https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/, Accessed January 10, 2019.
40.
Charrad
,
M.
,
Ghazzali
,
N.
,
Boiteau
,
V.
, and
Niknafs
,
A.
,
2014
, “
NbClust: An R Package for Determiningthe Relevant Number of Clusters in a Data Set
,”
J. Stat. Softw., Art.
,
61
(
6
), pp.
1
36
. 10.18637/jss.v061.i06
41.
Kwedlo
,
W.
,
2011
, “
A Clustering Method Combining Differential Evolution With the K-Means Algorithm
,”
Pattern Recognit. Lett.
,
32
(
12
), pp.
1613
1621
. 10.1016/j.patrec.2011.05.010
42.
Reynolds
,
A. P.
,
Richards
,
G.
,
de la Iglesia
,
B.
, and
Rayward-Smith
,
V. J.
,
2006
, “
Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms
,”
J. Math. Modell. Algorithms
,
5
(
4
), pp.
475
504
. 10.1007/s10852-005-9022-1
43.
Tibshirani
,
R.
,
Walther
,
G.
, and
Hastie
,
T.
,
2001
, “
Estimating the Number of Clusters in a Data Set via the Gap Statistic
,”
J. R. Stat. Soc. Series B Stat. Methodol.
,
63
(
2
), pp.
411
423
. 10.1111/1467-9868.00293
44.
Milligan
,
G. W.
, and
Cooper
,
M. C.
,
1985
, “
An Examination of Procedures for Determining the Number of Clusters in a Data Set
,”
Psychometrika
,
50
(
2
), pp.
159
179
. 10.1007/BF02294245
45.
Yang
,
T.
,
Ren
,
M.
, and
Zhou
,
K.
,
2018
, “
Identifying Household Electricity Consumption Patterns: A Case Study of Kunshan, China
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
861
868
. 10.1016/j.rser.2018.04.037
You do not currently have access to this content.