Abstract

A high-flux solar simulator is essential for evaluating solar thermal components under controlled and adjustable flux input conditions. This study presents a newly built high-flux solar simulator composed of 19 individual units. Each unit includes a xenon short-arc lamp (each consuming up to 6 kW electricity power) coupled with a truncated ellipsoidal reflector, a cooling blower, and a power module. The power module yields a current in the range of 50∼160 Ampere. The number of lamps in use is flexible, which allows for a wide range of radiation flux (10%∼100%) on the focal plane. The radiation power, peak value, flux distribution on the circular target plane, and conversion efficiency are evaluated based on a flux mapping method. The results indicate that the proposed solar simulator is capable of achieving thermal power of 23.3 kW, peak flux in excess of 1.78 MW/m2, a stagnation temperature exceeding 2360 °C, and average irradiance of 773.4 kW/m2 on the focal plane (diameter of 260 mm). The electro-thermal conversion efficiency of the simulator is 35.7%. A ray-tracing method was employed, and the simulation results were found to be in good agreement with those in the experiments. An experimental test of a volumetric ceramic receiver was conducted, and the results indicate the availability and applicability of the high-flux solar simulator when carrying out studies about solar receivers.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.