Due to their thermal storage capability, concentrated solar power (CSP) plants have flexibility on electricity dispatch, being able to participate in balancing power markets. The development of an optimum electricity delivery schedule should be fast to react to updated forecast and the dynamic electricity markets, apart from considering best operational practices, as it brings significant cost reductions and improvement in plant performance. Therefore, dispatch optimization tools should combine financial and operational optimization with acceptable computational time. In this context, an innovative dispatch optimization algorithm used to derive a CSP plant operation schedule is presented. FRED is a heuristic rule-based algorithm used to optimize financial income while considering plant best operational practices. Simulations performed with a CSP plant tower model following FRED optimization strategy show the possibility of improved financial results with fast dispatch planning, ensuring the importance of this technology in the pathway to a highly renewable energy mix.

References

References
1.
IRENA
,
2017
,
Adapting Market Design to High Shares of Variable Renewable Energy
,
International Renewable Energy Agency
,
Abu Dhabi
.
2.
Du
,
E.
,
Zhang
,
N.
,
Hodge
,
B.-M.
,
Kang
,
C.
, and
Kroposki
,
B.
,
2018
, “
Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems
,”
Appl. Energy
,
222
, pp.
649
661
.
3.
IRENA
,
2012
,
Renewable Energy Technologies: Cost Analysis Series Volume 1 (Power Sector)—Concentrating Solar Power
,
International Renewable Energy Agency
,
Abu Dhabi
.
4.
Wittmann
,
M.
,
Breitkreuz
,
H.
,
Schroedter-Homscheidt
,
M.
, and
Eck
,
M.
,
2008
, “
Case Studies on the Use of Solar Irradiance Forecast for Optimized Operation Strategies of Solar Thermal Power Plants
,”
IEEE Journal of Sel. Top. Appl. Earth Obs. Remote Sens.
1
(
1
), pp.
18
27
.
5.
IRENA
,
2018
,
Renewable Power Generation Costs in 2017
,
International Renewable Energy Agency
,
Abu Dhabi
.
6.
Dowling
,
A. W.
,
Zheng
,
T.
, and
Zavala
,
V. M.
,
2017
, “
Economic Assessment of Concentrated Solar Power Technologies: A Review
,”
Renew. Sust. Energy Rev.,
72
, pp.
1019
1032
.
7.
Vasallo
,
J. M.
, and
Bravo
,
M. J.
,
2016
, “
A Novel Two-Model Based Approach for Optimal Scheduling in CSP Plants
,”
Sol. Energy
,
126
, pp.
73
92
.
8.
Pousinho
,
H. M.
,
Contreras
,
J.
,
Pinson
,
P.
, and
Mendes
,
V. M. F.
,
2015
, “
Robust Optimization for Self-Scheduling and Bidding Strategies of Hybrid CSP-Fossil Power Plants
,”
Electr. Power Energy Syst.
,
67
, pp.
639
650
.
9.
González
,
J. L.
,
Dimoulkas
,
I.
, and
Amelin
,
M.
, “
Operation Planning of a CSP Plant in the Spanish
,”
11th International Conference on the European Energy Market
,
Krakow
,
May 28–30, 2014
.
10.
Dominguez
,
R.
,
Baringo
,
L.
, and
Conejo
,
A.
,
2012
, “
Optimal Offering Strategy for a Concentrating Solar Power Plant
,”
Appl. Energy
,
98
, pp.
3297
3318
.
11.
He
,
G.
,
Chen
,
Q.
,
Kang
,
C.
, and
Xia
,
Q.
,
2016
, “
Optimal Offering Strategy for Concentrating Solar Power Plants in Joint Energy, Reserve and Regulation Markets
,”
IEEE Trans. Sust. Energy
,
7
, pp.
1245
1254
.
12.
Baringo
,
L.
, and
Conejo
,
A. J.
,
2011
, “
Offering Strategy Via Robust Optimization
,”
IEEE Trans. Power Syst.,
26
, pp.
1418
1425
.
13.
Wagner
,
M. J.
,
Newman
,
A. M.
,
Hamilton
,
W. T.
, and
Braun
,
R. J.
,
2017
, “
Optimized Dispatch in a First-Principles Concentrating Solar Power Production Model
,”
Appl. Energy
,
203
, pp.
959
971
.
14.
Wittmann
,
M.
,
Eck
,
M.
,
Pitz-Paal
,
R.
, and
Müller-Steinhagen
,
H.
,
2011
, “
Methodology for Optimized Operation Strategies of Solar Thermal Power Plants With Integrated Heat Storage
,”
Sol. Energy
,
84
(
4
), pp.
653
659
.
15.
Heuristic Optimization
,
2005
,
Portfolio Management With Heuristic Optimization
,
Springer
,
New York
, pp.
38
76
.
16.
Wolpert
,
D. H.
, and
Macready
,
W. G.
,
1997
, “
No Free Lunch Theorems for Optimization
,”
IEEE Trans. Evol. Comput.
1
(
1
), pp.
67
82
.
17.
Zhang
,
J. J.
,
Wang
,
F.-Y.
,
Wang
,
Q.
,
Hao
,
D.
,
Yang
,
X.
,
Gao
,
D. W.
,
Zhao
,
X.
, and
Zhang
,
Y.
,
2018
, “
Parallel Dispatch: A New Paradigm of Electrical Power System Dispatch
,”
J. Autom. Sin.
,
5
(
1
), pp.
311
319
.
18.
U.S. Department of Energy
,
2012
,
Economic Dispatch and Technological Change
,
United States Department of Energy
,
Washington, DC
.
19.
Boyen
,
X. P.
, and
Wehenkel
,
L.
, “
Fuzzy Decision Tree Induction for Power System Security Assessment
,”
IFAC Control of Power Plants and Power Systems
,
Cancun, Mexico
,
Dec. 1995
, pp.
299
304
.
20.
Zavoico
,
A. B.
,
2001
,
Solar Power Tower Design Basis Document
,
Sandia National Laboratories
,
Albuquerque, NM
.
21.
Mailier
,
P. J.
,
Jolliffe
,
I. T.
, and
Stephenson
,
D. B.
,
2008
, “
Assessing and Reporting the Quality of Commercial Weather Forecasts
,”
Meteorol. Appl.,
15
, pp.
423
429
.
You do not currently have access to this content.