In this work, the effect of infiltration method on the saturation rate of paraffin phase change material within graphite foams is experimentally investigated. Graphite foams infiltrated with paraffin have been found to be effective for solar energy storage, but it has been found that it is difficult to completely saturate the foam with paraffin. The effectiveness of the fill will have a significant effect on the performance of the system, but the data on fill ratio are difficult to separate from confounding effects such as type of graphite or phase change material (PCM) used. This will be the first detailed quantitative study that directly isolates the effect of infiltration method on fill ratio of PCM in graphite foams. In this work, the two most commonly reported methods of infiltration are studied under controlled conditions. In fact, the effect of the infiltration method on the paraffin saturation rate is found to be highly significant. It was found that the more commonly used simple submersion technique is ineffective at filling the voids within the graphite foam. Repeated tests showed that at least 25% of the reported open space within the foam was left unfilled. In contrast, it was found that the use of a vacuum oven lead to a complete fill of the foam. These high saturation rates were achieved with significantly shorter dwell times than in previously reported studies and can be of significant use to others working in this area.

References

References
1.
Ning
,
Z.
, and
Wirtz
,
R. A.
,
2004
, “
A Hybrid Thermal Energy Storage Device, Part II: Thermal Performance Figures of Merit
,”
J. Electron. Packag.
,
126
(
1
), pp.
8
13
.10.1115/1.1646420
2.
Dutta
,
P.
,
Nayak
,
K. C.
,
Saha
,
S. K.
, and
Srinivasan
,
K.
,
2006
, “
A Numerical Model for Heat Sinks With Phase Change Materials and Thermal Conductivity Enhancers
,”
Int. J. Heat Mass Transfer
,
49
(
11-12
), pp.
1833
1844
.10.1016/j.ijheatmasstransfer.2005.10.039
3.
Huang
,
M. J.
,
Eames
,
P. C.
, and
Norton
,
B.
,
2005
, “
Phase Change Materials for Limiting Temperature Rise in Building Integrated Photovoltaics
,”
Sol. Energy
,
80
, pp.
1121
1130
.10.1016/j.solener.2005.10.006
4.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Kang
,
S. S.
,
2005
, “
A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
22
, pp.
281
289
.10.1109/TCAPT.2005.848534
5.
Pal
,
D.
, and
Joshi
,
Y. K.
,
1998
, “
Thermal Management of an Avionics Module Using Solid-Liquid Phase Change Materials
,”
J. Thermophys. Heat Transfer
,
12
(
2
), pp.
256
262
.10.2514/2.6329
6.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2007
, “
Analysis of Solid-Liquid Phase Change Under Pulsed Heating
,”
J. Heat Transfer
,
129
, pp.
395
400
.10.1115/1.2430728
7.
Siahpush
,
A.
,
O’Brien
,
J.
, and
Crepeau
,
J.
,
2008
, “
Phase Change Heat Transfer Enhancement Using Copper Porous Foam
,”
J. Heat Transfer
,
130
, p.
082301
.10.1115/1.2928010
8.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Shaikh
,
S.
,
2007
, “
Experimental Study on the Influence of Foam Porosity and Pore Size on the Melting of Phase Change Materials
,”
J. Appl. Phys.
,
102
, p.
083541
.10.1063/1.2802183
9.
Py
,
Z.
,
Olives
,
R.
, and
Mauran
,
S.
,
2001
, “
Paraffin/Porous-Graphite-Matrix Composite as a High and Constant Power Thermal Storage Material
,”
Int. J. Heat Mass Transfer
,
44
, pp.
2727
2737
.10.1016/S0017-9310(00)00309-4
10.
Pinceman
,
S.
,
Py
,
X.
,
Olives
,
R.
,
Christ
,
M.
, and
Oettinger
,
O.
,
2008
, “
Elaboration of Conductive Thermal Storage Composites Made of Phase Change Materials and Graphite for Solar Plant
,”
J. Sol. Energy Eng.
,
130
, p.
011005
.10.1115/1.2804620
11.
Mills
,
A.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2006
, “
Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix
,”
Appl. Therm. Eng.
,
26
, pp.
1652
1661
.10.1016/j.applthermaleng.2005.11.022
12.
Sari
,
A.
, and
Karaipekli
,
A.
,
2007
, “
Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material
,”
Appl. Therm. Eng.
,
27
, pp.
1271
1277
.10.1016/j.applthermaleng.2006.11.004
13.
Lopez
,
J.
,
Acem
,
Z.
,
Lopez
,
J.
, and
Palomo Del Barrio
,
E.
,
2010
, “
KNO3/NaNO3—Graphite Materials for Thermal Energy Storage at High Temperature: Part I—Elaboration Methods and Thermal Properties
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1580
1585
.10.1016/j.applthermaleng.2010.03.013
14.
Zhou
,
D.
, and
Zhao
,
C. Y.
,
2011
, “
Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials
,”
Appl. Therm. Eng.
,
31
, pp.
970
977
.10.1016/j.applthermaleng.2010.11.022
15.
Zhao
,
C. Y.
, and
Wu
,
Z. G.
,
2011
, “
Heat Transfer Enhancement of High Temperature Thermal Energy Storage Using Metal Foams and Expanded Graphite
,”
Sol. Energy Mater. Sol. Cells
,
95
, pp.
636
643
.10.1016/j.solmat.2010.09.032
16.
Wu
,
Z. G.
, and
Zhao
,
C. Y.
,
2011
, “
Experimental Investigations of Porous Materials in High Temperature Thermal Energy Storage Systems
,”
Sol. Energy
,
85
, pp.
1371
1380
.10.1016/j.solener.2011.03.021
17.
Mesalhy
,
O.
,
Lafdi
,
K.
, and
Elgafy
,
A.
,
2006
, “
Carbon Foam Matrices Saturated With PCM for Thermal Protection Purpose
,”
Carbon
,
44
, pp.
2080
2088
.10.1016/j.carbon.2005.12.019
18.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Elgafy
,
A.
,
2008
, “
Graphite Foams Infiltrated With Phase Change Materials as Alternative Materials for Space and Terrestrial Thermal Energy Storage Applications
,”
Carbon
,
46
(
1
), pp.
159
168
.10.1016/j.carbon.2007.11.003
19.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Elgafy
,
A.
,
2008
, “
Merits of Employing Foam Encapsulated Phase Change Materials for Pulsed Power Electronics Cooling Applications
,”
J. Electron. Packag.
,
130
(
2
), p.
0210041
.10.1115/1.2912185
20.
Wirtz
,
R.
,
Narla
,
V.
,
Zhao
,
T.
, and
Jiang
,
Y.
,
2004
, “
Non-Metallic and Structurally Efficient Thermal Energy Storage Composites for Avionics Temperature Control, Part I: Thermal Characterization
,”
American Institute of Aeronautics and Astronautics
, AIAA-2004-0343.
21.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Shaikh
,
S.
,
2007
, “
The Effect of Surface Energy on the Heat Transfer Enhancement of Paraffin Wax/Carbon Foam Composites
,”
Carbon
,
45
, pp.
2188
2194
.10.1016/j.carbon.2007.06.055
22.
Almajali
,
M.
,
Lafdi
,
K.
, and
Shaikh
,
S.
,
2007
, “
Interfacial and Capillary Pressure Effects on the Thermal Performance of Wax/Foam Composites
,”
J. Appl. Phys.
,
102
(
3
), p.
033506
.10.1063/1.2767268
23.
Zhong
,
Y.
,
Guo
,
Q.
,
Li
,
S.
,
Shi
,
J.
, and
Liu
,
L.
,
2010
, “
Thermal and Mechanical Properties of Graphite Foam/Wood's Alloy Composite for Thermal Energy Storage
,”
Carbon
,
48
, pp.
1689
1692
.10.1016/j.carbon.2010.01.002
24.
Zhong
,
Y.
,
Guo
,
Q.
,
Li
,
S.
,
Shi
,
J.
, and
Liu
,
L.
,
2010
, “
Heat Transfer Enhancement of Paraffin Wax Using Graphite Foam for Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
94
, pp.
1011
1014
.10.1016/j.solmat.2010.02.004
25.
Song
,
J.
,
Guo
,
Q.
,
Zhong
,
Y.
,
Gao
,
X.
,
Feng
,
Z.
,
Fan
,
Z.
,
Shi
,
J.
, and
Liu
,
L.
,
2012
, “
Thermophysical Properties of High-Density Graphite Foams and Their Paraffin Composites
,”
New Carbon Mater.
,
27
, pp.
27
34
.10.1016/S1872-5805(12)60002-X
You do not currently have access to this content.