Abstract

This paper introduces an experimental approach to enhance thermal energy storage (TES) tank performance by employing a novel control strategy and an automatic flow valve. The valve adjusts mass flow to minimize heat loss and maximize useful heat within a specified input–output temperature range. Experiments were conducted indoors, simulating input heat via an electric heating element, and adhering to ANSI/ASHRAE 93-2010 standards. In the proposed control strategy, the set point is self-regulated based on an input value which in this case is the heat introduced into the TES system. In this way, when there is more input heat available, the mass flow will increase to obtain more useful heat at the output and, on the contrary, when there is less heat available, the mass flow will be reduced to obtain greater exergy. A comparison between this strategy and conventional on–off control systems was conducted, evaluating their performance based on useful heat obtained over an 8-h period with varying input heat levels. Results demonstrate that the proposed flow control methodology consistently outperforms on–off control, achieving a maximum 13.56% increase in useful heat under optimal conditions. This underscores the effectiveness of the novel control strategy in maximizing thermal energy storage tank efficiency.

References

1.
International Energy Agency
,
2021
, “Key World Energy Statistics 2021,” https://www.iea.org/reports/key-world-energy-statistics-2021/final-consumption
2.
Gil
,
J. D.
,
Topa
,
A.
,
Álvarez
,
J. D.
,
Torres
,
J. L.
, and
Pérez
,
M.
,
2022
, “
A Review From Design to Control of Solar Systems for Supplying Heat in Industrial Process Applications
,”
Renew. Sustain. Energy Rev.
,
163
, p.
112461
.
3.
Diego-Ayala
,
U.
, and
Carrillo
,
J. G.
,
2016
, “
Evaluation of Temperature and Efficiency in Relation to Mass Flow on a Solar Flat Plate Collector in Mexico
,”
Renew. Energy
,
96
(
Part A
), pp.
756
764
.
4.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
New York
.
5.
Rodríguez-García
,
M. M.
,
Andreu
,
J. F.
, and
González-Cuesta
,
A.
,
2019
, “
Special Valves for Solar Thermal Power Plants. Tests and Designs
,”
AIP Conference Proceedings, Vol. 2126
,
Casablanca, Morocco
,
Oct. 2–5, 2018
.
6.
Kim
,
J. H.
,
Lee
,
U. J.
,
Li
,
L. J.
,
Kim
,
C.
, and
Hong
,
H.
,
2016
, “
Improvement of Collection Efficiency and Solar Fraction in Solar Thermal Storage System Using a 3-Way Valve and a 2-Stage Flowrate Control
,”
J. Mech. Sci. Technol.
,
30
(
7
), pp.
3347
3356
.
7.
Plaza Gomariz
,
F.
,
Cejudo López
,
J. M.
, and
Domínguez Muñoz
,
F.
,
2019
, “
An Analysis of Low Flow for Solar Thermal System for Water Heating
,”
Sol. Energy
,
179
, pp.
67
73
.
8.
Shafieian
,
A.
,
Jaffer Osman
,
J.
,
Khiadani
,
M.
, and
Nosrati
,
A.
,
2019
, “
Enhancing Heat Pipe Solar Water Heating Systems Performance Using a Novel Variable Mass Flow Rate Technique and Different Solar Working Fluids
,”
Sol. Energy
,
186
, pp.
191
203
.
9.
Ayompe
,
L. M.
, and
Duffy
,
A.
,
2013
, “
Analysis of the Thermal Performance of a Solar Water Heating System With Flat Plate Collectors in a Temperate Climate
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
447
454
.
10.
Abutayeh
,
M.
,
Padilla
,
R. V.
,
Lake
,
M.
,
Lim
,
Y. Y.
,
Garcia
,
J.
,
Sedighi
,
M.
,
Soo Too
,
Y. C.
, and
Jeong
,
K.
,
2019
, “
Effect of Short Cloud Shading on the Performance of Parabolic Trough Solar Power Plants: Motorized vs Manual Valves
,”
Renew. Energy
,
142
, pp.
330
344
.
11.
Lennermo
,
G.
,
Lauenburg
,
P.
, and
Werner
,
S.
,
2019
, “
Control of Decentralised Solar District Heating
,”
Sol. Energy
,
179
, pp.
307
315
.
12.
García
,
J.
,
Barraza
,
R.
,
Soo Too
,
Y. C.
,
Vasquez-Padilla
,
R.
,
Acosta
,
D.
,
Estay
,
D.
, and
Valdivia
,
P.
,
2022
, “
Transient Simulation of a Control Strategy for Solar Receivers Based on Mass Flow Valves Adjustments and Heliostats Aiming
,”
Renew. Energy
,
185
, pp.
1221
1244
.
13.
Golmohamadi
,
H.
, and
Larsen
,
K. G.
,
2022
, “
Economic Heat Control of Mixing Loop for Residential Buildings Supplied by Low-Temperature District Heating
,”
J. Build. Eng.
,
46
, p.
103286
.
14.
Becq
,
A.
, and
Chèze
,
D.
,
2021
, “
Influence of Mixing Valve Dynamics and Recirculation Loop Connection to Solar Tank on Large Hot Water System Performances
,”
Sol. Energy
,
218
, pp.
211
225
.
15.
Gunjo
,
D. G.
,
Mahanta
,
P.
, and
Robi
,
P. S.
,
2017
, “
CFD and Experimental Investigation of Flat Plate Solar Water Heating System Under Steady State Condition
,”
Renew. Energy
,
106
, pp.
24
36
.
16.
Nhut
,
L. M.
, and
Park
,
Y. C.
,
2013
, “
A Study on Automatic Optimal Operation of a Pump for Solar Domestic Hot Water System
,”
Sol. Energy
,
98
(
Part C
), pp.
448
457
.
17.
Budea
,
S.
, and
Bǎdescu
,
V.
,
2017
, “
Improving the Performance of Systems With Solar Water Collectors Used in Domestic Hot Water Production
,”
Energy Procedia
,
112
, pp.
398
403
.
18.
Furbo
,
S.
, and
Shah
,
L. J.
,
1996
, “
Optimum Solar Collector Fluid Flow Rates
,”
Proceedings of the Eurosun096
,
Freiburg, Germany
,
Sept. 16–19
.
19.
Nhut
,
L. M.
, and
Park
,
Y. C.
,
2020
, “
A Study on Developing an Automatic Controller With an Inverter Collector Pump for Solar-Assisted Heating System
,”
Energies
,
13
(
9
), p.
2128
.
20.
Paing
,
S. T.
,
Anderson
,
T. N.
, and
Nates
,
R. J.
,
2022
, “
Reducing Heat Loss From Solar Hot Water Storage Tanks Using Passive Baffles
,”
J. Energy Storage
,
52
(
Part A
), p.
104807
.
21.
Moncho-Esteve
,
I. J.
,
Gasque
,
M.
,
González-Altozano
,
P.
, and
Palau-Salvador
,
G.
,
2017
, “
Simple Inlet Devices and Their Influence on Thermal Stratification in a Hot Water Storage Tank
,”
Energy Build.
,
150
, pp.
625
638
.
22.
Li
,
S.
,
Zhang
,
Y.
,
Zhang
,
K.
,
Li
,
X.
,
Li
,
Y.
, and
Zhang
,
X.
,
2014
, “
Study on Performance of Storage Tanks in Solar Water Heater System in Charge and Discharge Progress
,”
Energy Procedia
,
48
, pp.
384
393
.
23.
Chen
,
J.
,
Xu
,
H. T.
,
Wang
,
Z. Y.
, and
Han
,
S. P.
,
2018
, “
Thermal Performance Study of a Water Tank for a Solar System With a Fresnel Lens
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051005
.
24.
Belmonte
,
J. F.
,
Díaz-Heras
,
M.
, and
Almendros-Ibáñez
,
J. A.
,
2023
, “
A Simplified Method for Exergy Assessment of Thermal Energy Storage Tanks: Comparative Performance of Tanks Containing a Phase-Change Material and Water
,”
J. Energy Storage
,
68
, p.
107863
.
25.
Alesbe
,
I.
,
Abdul Wahhab
,
H. A.
, and
Aljabair
,
S.
,
2023
, “
Transient Study of Thermal Stratification of Full-Scale Chilled Water Storage Tank During Optimum Discharge Condition
,”
J. Energy Storage
,
65
, p.
107236
.
26.
Kumar
,
R.
,
Kumar
,
M.
, and
Patil
,
A. K.
,
2023
, “
Exergetic Performance Analysis of Energy Storage Unit Fitted With Wire Coil Inserts
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021003
.
27.
ASHRAE
,
2014
, “Methods of Testing to Determine the Thermal Performance of Solar Collectors,” ANSI Stand B198. 1.
28.
Fernández-Seara
,
J.
,
Uhía
,
F. J.
, and
Sieres
,
J.
,
2007
, “
Experimental Analysis of a Domestic Electric Hot Water Storage Tank. Part II: Dynamic Mode of Operation
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
137
144
.
29.
Nicodemus
,
J.
,
Smith
,
J.
,
Noreika
,
J.
,
Gomi
,
M.
, and
Zhou
,
T.
,
2024
, “
Effects of an Annular Baffle on Heat Transfer to an Immersed Coil Heat Exchanger in Thermally Stratified Tanks
,”
ASME J. Sol. Energy Eng.
,
146
(
5
), p.
051002
.
30.
Li
,
G.
,
2016
, “
Sensible Heat Thermal Storage Energy and Exergy Performance Evaluations
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
897
923
.
31.
Fanney
,
A. H.
,
1984
, “
An Experimental Technique for Testing Thermosyphon Solar Hot Water Systems
,”
ASME J. Sol. Energy Eng.
,
106
(
4
), pp.
457
464
.
You do not currently have access to this content.