Abstract

The cogeneration of hydrogen and electricity can potentially increase the economic attractiveness of concentrated solar thermal power. In this article, a techno-economic analysis is conducted to evaluate the feasibility of a concentrated solar plant coupled to a supercritical carbon dioxide (sCO2) Brayton cycle, a four-step copper–chlorine (Cu–Cl) thermochemical hydrogen production cycle, and a thermal energy storage system. Thermal energy storage can increase the capacity of the power cycle and hydrogen plant. Two cases are considered. In the first case, a solid particle receiver is used to provide thermal input to the overall system and serves as the thermal storage system via hot particles. In the second case, a high-efficiency, micro-pin central receiver using sCO2 is considered. The receiver produces sCO2 at temperatures greater than 720 °C operating in a closed loop, which provides energy to molten salt thermal storage, the power cycle, and the hydrogen production plant. Simulation models of the receiver heat transfer loop, thermal storage system, power cycle, and hydrogen plant are developed and used to size key components including heat exchangers, reactors, and turbomachinery. These simulations are then utilized to estimate thermodynamic parameters, conduct economic analyses, and evaluate the system performance, as well as determine the costs associated with the cogeneration of hydrogen and electricity. Results indicate that the particle-based system achieves a levelized cost of electricity (LCOE) of $0.060 kWh ± $0.0036 kWh and a levelized cost of hydrogen (LCOH2) of $3.79 kg ± $0.376 kg, with energy and exergy efficiencies of 17% and 18%, respectively. The gas-based system demonstrates higher efficiencies (19% energy and 21% exergy) but has greater costs, with an LCOE of $0.106 kWh ± $0.0064 kWh and an LCOH2 of $4.167 kg ± $0.463 kg.

References

1.
IRENA
,
2019
,
Hydrogen: A Renewable Energy Perspective
,
International Renewable Energy Agency
,
Abu Dhabi, UAE
.
2.
Khojasteh Salkuyeh
,
K.
,
Saville
,
Y.
,
MacLean
,
B. A.
, and
MacLean
,
H. L.
,
2017
, “
Techno-Economic Analysis and Life Cycle Assessment of Hydrogen Production From Natural Gas Using Current and Emerging Technologies
,”
Int. J. Hydrogen Energy
,
42
(
30
), pp.
18894
18909
.
3.
El-Emam
,
R. S.
, and
Özcan
,
H.
,
2019
, “
Comprehensive Review on the Techno-Economics of Sustainable Large-Scale Clean Hydrogen Production
,”
J. Cleaner Prod.
,
220
, pp.
593
609
.
4.
Nematollahi
,
O.
,
Alamdari
,
P.
,
Jahangiri
,
M.
,
Sedaghat
,
A.
, and
Alemrajabi
,
A. A.
,
2019
, “
A Techno-Economical Assessment of Solar/Wind Resources and Hydrogen Production: A Case Study With GIS Maps
,”
Energy
,
175
, pp.
914
930
.
5.
Mehos
,
M.
,
Turchi
,
C.
,
Jorgensen
,
J.
,
Denholm
,
P.
,
Ho
,
C.
,
Armijo
,
K.
, and
National Renewable Energy Laboratory (NREL)
,
2016
, “
On the Path to SunShot: Advancing Concentrating Solar Power Technology, Performance, and Dispatchability
,”
Golden, CO
.
6.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
,
Concentrating Solar Power Gen3 Demonstration Roadmap
,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
7.
Kolb
,
G. J.
,
Diver
,
R. B.
, and
Siegel
,
N.
,
2007
, “
Central-Station Solar Hydrogen Power Plant
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
179
183
.
8.
Hosseini
,
S. E.
, and
Wahid
,
M. A.
,
2020
, “
Hydrogen From Solar Energy, a Clean Energy Carrier From a Sustainable Source of Energy
,”
Int. J. Energy Res.
,
44
(
6
), pp.
4110
4131
.
9.
Shaner
,
M. R.
,
Atwater
,
H. A.
,
Lewis
,
N. S.
, and
McFarland
,
E. W.
,
2016
, “
A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy
,”
Energy Environ. Sci.
,
9
(
7
), pp.
2354
2371
.
10.
Ishaq
,
H.
, and
Dincer
,
I.
,
2021
, “
Comparative Assessment of Renewable Energy-Based Hydrogen Production Methods
,”
Renewable Sustainable Energy Rev.
,
135
, p.
110192
.
11.
Choi
,
J.-H.
,
Tak
,
N.-I.
,
Kim
,
Y.
, and
Park
,
W. S.
,
2005
, “
Hydrogen Production Costs of Various Primary Energy Sources
,” KAERI Technical Report, Korea Atomic Energy Research Institute, Daejeon, South Korea. https://inis.iaea.org/records/zzm6d-9j915.
12.
Charvin
,
P.
,
Abanades
,
S.
,
Flamant
,
G.
, and
Lemort
,
F.
,
2008
, “
Analysis of Solar Chemical Processes for Hydrogen Production From Water Splitting Thermochemical Cycles
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1547
1556
.
13.
Corgnale
,
C.
, and
Summers
,
W. A.
,
2011
, “
Solar Hydrogen Production by the Hybrid Sulfur Process
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
11604
11619
.
14.
Steward
,
D.
,
Ramsden
,
T.
, and
Zuboy
,
J.
,
2008
,
H2A Production Model, Version 2 User Guide
,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
15.
Sadeghi
,
S.
, and
Ghandehariun
,
S.
,
2022
, “
A Standalone Solar Thermochemical Water Splitting Hydrogen Plant With High-Temperature Molten Salt: Thermodynamic and Economic Analyses and Multi-objective Optimization
,”
Energy
,
240
, p.
122723
.
16.
Zhang
,
S.
, and
Liu
,
G.
,
2023
, “
Thermal Design and Performance Optimization of the Four-Step Cu–Cl Cycle Coupled With Clean Energy for Hydrogen Production
,”
J. Cleaner Prod.
,
422
, p.
138593
.
17.
Temiz
,
M.
, and
Dincer
,
I.
,
2021
, “
An Integrated Bifacial Photovoltaic and Supercritical Geothermal Driven Copper-Chlorine Thermochemical Cycle for Multigeneration
,”
Sustain. Energy Technol. Assess.
,
45
, p.
101117
.
18.
Hinkley
,
J. T.
,
O’Brien
,
J. A.
,
Fell
,
C. J.
, and
Lindquist
,
S. E.
,
2011
, “
Prospects for Solar Only Operation of the Hybrid Sulphur Cycle for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
11596
11603
.
19.
Razi
,
F.
, and
Dincer
,
I.
,
2020
, “
A Critical Evaluation of Potential Routes of Solar Hydrogen Production for Sustainable Development
,”
J. Cleaner Prod.
,
264
, p.
121582
.
20.
Ho
,
C. K.
,
Sment
,
J.
,
Albrecht
,
K.
,
Mills
,
B.
,
Schroeder
,
N.
,
Laubscher
,
H.
,
Gonzalez-Portillo
,
L. F.
, et al
,
2021
,
Sandia Report Gen 3 Particle Pilot Plant (G3P3)—High-Temperature Particle System for Concentrating Solar Power (Phases 1 and 2)
,
Sandia National Laboratories
,
Albuquerque, NM
.
21.
Lubkoll
,
M.
,
Ebert
,
M.
,
Amsbeck
,
L.
,
Hirt
,
A.
,
Frantz
,
C.
,
Rheinländer
,
J.
, and
Buck
,
R.
,
2022
, “
Development Progress of the CentRec® Particle Receiver Technology
,”
AIP Conf. Proc.
,
2445
, p.
030004
.
22.
Albrecht
,
K. J.
,
Bauer
,
M. L.
, and
Ho
,
C. K.
,
2019
, “
Parametric Analysis of Particle CSP System Performance and Cost to Intrinsic Particle Properties and Operating Conditions
,”
Proceedings of the ASME 2019 13th International Conference Energy Sustainability, ES2019
,
San Diego, CA
,
July 14–17
, Paper No. ES2019-3893.
23.
González-Portillo
,
L. F.
,
Abbas
,
R.
,
Albrecht
,
K.
, and
Ho
,
C. K.
,
2021
, “
Analysis of Optical Properties in Particle Curtains
,”
Sol. Energy
,
213
, pp.
211
224
.
24.
Mills
,
B.
,
Shaeffer
,
R.
,
Ho
,
C. K.
, and
Yue
,
L.
,
2019
, “
Modeling the Thermal Performance of Falling Particle Receivers Subject to External Wind
,”
Proceedings of the ASME 2019 13th International Conference on Energy Sustainability (ES2019)
,
Bellevue, WA
,
July 14–17
, Paper No. ES2019-3913, p.
V001T05A012
.
25.
Mills
,
B.
, and
Ho
,
C. K.
,
2019
, “
Simulation and Performance Evaluation of On-Sun Particle Receiver Tests
,”
AIP Conf. Proc.
,
2126
(
1
), p.
030036
.
26.
González-Portillo
,
L. F.
,
Soria-Alcaide
,
V.
,
Albrecht
,
K.
,
Ho
,
C. K.
, and
Mills
,
B.
,
2023
, “
Benchmark and Analysis of a Particle Receiver 1D Model
,”
Sol. Energy
,
255
, pp.
301
313
.
27.
Zada
,
K. R.
,
Hyder
,
Kevin Drost
,
M.
, and
Fronk
,
B. M.
,
2016
, “
Numbering-Up of Microscale Devices for Megawatt-Scale Supercritical Carbon Dioxide Concentrating Solar Power Receivers
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061007
.
28.
Hyder
,
M. B.
, and
Fronk
,
B. M.
,
2018
, “
Simulation of Thermal Hydraulic Performance of Multiple Parallel Micropin Arrays for Concentrating Solar Thermal Applications with Supercritical Carbon Dioxide
,”
Sol. Energy
,
164
, pp.
327
338
.
29.
Fronk
,
B. M.
,
Siefering
,
B. J.
,
Paul
,
B. K.
,
Pratte
,
W. H.
,
Doğan
,
ÖN
,
Rozman
,
K. A.
,
Rasouli
,
E.
, and
Narayanan
,
V.
,
2024
, “
Micro-Laminated Pin Array Solar Receivers for High Flux Heating of Supercritical Carbon Dioxide Part 1: Design and Fabrication Methods
,”
Sol. Energy
,
273
, p.
113123
.
30.
Odele
,
R. P.
,
Narayanan
,
V.
, and
Rasouli
,
E.
,
2022
, “
Performance Model of an Additively Manufactured Micro-Pin Array Solar Thermal Central Receiver
,”
Sol. Energy
,
241
, pp.
621
636
.
31.
Bahrami
,
L.
,
Yurkovetsky
,
S. M.
,
Rasouli
,
E.
,
Narayanan
,
V.
, and
Fronk
,
B. M.
,
2023
, “
Simulation of the Performance of a High Temperature Solar Thermal Receiver Comprised Parallel Micro-Pin Unit-Cells Fabricated Via Additive Manufacturing
,”
Proceedings of the ASME 2023 17th International Conference on Energy Sustainability
,
Washington, DC
,
July 10–12
,
American Society of Mechanical Engineers
, Paper No. ES2023-107525.
32.
Bahrami
,
L.
,
Gutierrez Plascencia
,
J.
, and
Fronk
,
B. M.
,
2024
, “
Investigating the Performance of Supercritical CO2 Heating: A Comparative Study of Variable and Uniform Pin Height Designs in Additive Manufactured Micro-Pin Receivers
,”
Proceedings of the ASME 2024 18th International Conference on Energy Sustainability
,
Anaheim, CA
,
July 15–17
,
American Society of Mechanical Engineers
, Paper No. ES2024-131370.
33.
Xiao
,
L.
,
Wu
,
S. Y.
, and
Li
,
Y. R.
,
2012
, “
Advances in Solar Hydrogen Production Via Two-Step Water-Splitting Thermochemical Cycles Based on Metal Redox Reactions
,”
Renewable Energy
,
41
, pp.
1
12
.
34.
Rosen
,
M. A.
,
2010
, “
Advances in Hydrogen Production by Thermochemical Water Decomposition: A Review
,”
Energy
,
35
(
2
), pp.
1068
1076
.
35.
Sadeghi
,
S.
, and
Ghandehariun
,
S.
,
2020
, “
Thermodynamic Analysis and Optimization of an Integrated Solar Thermochemical Hydrogen Production System
,”
Int. J. Hydrogen Energy
,
45
(
53
), pp.
28426
28436
.
36.
Wang
,
Z.
,
Naterer
,
G. F.
,
Gabriel
,
K. S.
,
Secnik
,
E.
,
Gravelsins
,
R.
, and
Daggupati
,
V.
,
2011
, “
Thermal Design of a Solar Hydrogen Plant With a Copper-Chlorine Cycle and Molten Salt Energy Storage
,”
Int. J. Hydrogen Energy
,
36
(
17
), pp.
11258
11272
.
37.
Sadeghi
,
S.
,
Ghandehariun
,
S.
, and
Naterer
,
G. F.
,
2020
, “
Exergoeconomic and Multi-objective Optimization of a Solar Thermochemical Hydrogen Production Plant With Heat Recovery
,”
Energy Convers. Manage.
,
225
, p.
113441
.
38.
Li
,
X.
,
Sun
,
X.
,
Song
,
Q.
,
Yang
,
Z.
,
Wang
,
H.
, and
Duan
,
Y.
,
2022
, “
A Critical Review on Integrated System Design of Solar Thermochemical Water-Splitting Cycle for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
47
(
79
), pp.
33619
33642
.
39.
Ishaq
,
H.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2018
, “
Development and Assessment of a Solar, Wind and Hydrogen Hybrid Trigeneration System
,”
Int. J. Hydrogen Energy
,
43
(
52
), pp.
23148
23160
.
40.
Sayyaadi
,
H.
, and
Saeedi Boroujeni
,
M.
,
2017
, “
Conceptual Design, Process Integration, and Optimization of a Solar Cu–Cl Thermochemical Hydrogen Production Plant
,”
Int. J. Hydrogen Energy
,
42
(
5
), pp.
2771
2789
.
41.
Ishaq
,
H.
, and
Dincer
,
I.
,
2019
, “
Design and Performance Evaluation of a New Biomass and Solar Based Combined System With Thermochemical Hydrogen Production
,”
Energy Convers. Manage.
,
196
, pp.
395
409
.
42.
Siddiqui
,
O.
,
Ishaq
,
H.
, and
Dincer
,
I.
,
2019
, “
A Novel Solar and Geothermal-Based Trigeneration System for Electricity Generation, Hydrogen Production and Cooling
,”
Energy Convers. Manage.
,
198
, p.
111812
.
43.
Temiz
,
M.
, and
Dincer
,
I.
,
2021
, “
Enhancement of Solar Energy Use by an Integrated System for Five Useful Outputs: System Assessment
,”
Sustain. Energy Technol. Assess.
,
43
, p.
100952
.
44.
Khormi
,
N. A.
, and
Fronk
,
B. M.
,
2023
, “
Feasibility of High Temperature Concentrated Solar Power for Cogeneration of Electricity and Hydrogen Using Supercritical Carbon Dioxide Receiver Technology
,”
Proceedings of the ASME 2023 17th International Conference on Energy Sustainability
,
Washington, DC
,
July 10–12
,
American Society of Mechanical Engineers
, Paper No. ES2023-107082.
45.
González-Portillo
,
L. F.
,
Albrecht
,
K.
, and
Ho
,
C. K.
,
2022
, “
Improvements in the Techno-Economic Analysis of Particle CSP Systems
,”
AIP Conf. Proc.
,
2431
(
1
), p.
030010
.
46.
Zhu
,
Q.
,
Tan
,
X.
,
Barari
,
B.
,
Caccia
,
M.
,
Strayer
,
A. R.
,
Pishahang
,
M.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2021
, “
Design of a 2 MW ZrC/W-Based Molten-Salt-to-SCO2 PCHE for Concentrated Solar Power
,”
Appl. Energy
,
300
, p.
117313
.
47.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
48.
Aspen Technology, Inc.
,
2017
,
System Management Guide Aspen Plus
,
Aspen Technology
,
Bedford, MA
.
49.
Ho
,
C. K.
,
Carlson
,
M.
,
Garg
,
P.
, and
Kumar
,
P.
,
2016
, “
Technoeconomic Analysis of Alternative Solarized S-CO2 Brayton Cycle Configurations
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051008
.
50.
Stein
,
W. H.
, and
Buck
,
R.
,
2017
, “
Advanced Power Cycles for Concentrated Solar Power
,”
Sol. Energy
,
152
, pp.
91
105
.
51.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
52.
González-Portillo
,
L. F.
,
Albrecht
,
K.
, and
Ho
,
C. K.
,
2021
, “
Techno-Economic Optimization of CSP Plants With Free-Falling Particle Receivers
,”
Entropy
,
23
(
1
), p.
76
.
53.
Neises
,
T.
, and
Turchi
,
C.
,
2019
, “
Supercritical Carbon Dioxide Power Cycle Design and Configuration Optimization to Minimize Levelized Cost of Energy of Molten Salt Power Towers Operating at 650 °C
,”
Sol. Energy
,
181
, pp.
27
36
.
54.
Ferrandon
,
M.
,
Ferrandon
,
M. S.
,
Lewis
,
M. A.
,
Tatterson
,
D. F.
,
Nankani
,
R. V.
,
Kumar
,
M.
,
Wedgewood
,
L. E.
, and
Nitsche
,
L. C.
,
2008
,
The Hybrid Cu–Cl Thermochemical Cycle: I. Conceptual Process Design and H2A Cost Analysis; II. Limiting the Formation of CuCl During Hydrolysis
,
National Hydrogen Association (NHA)
,
Sacramento, CA
.
55.
Ferrandon
,
M. S.
,
Lewis
,
M. A.
,
Alvarez
,
F.
, and
Shafirovich
,
E.
,
2010
, “
Hydrolysis of CuCl2 in the Cu-Cl Thermochemical Cycle for Hydrogen Production: Experimental Studies Using a Spray Reactor With an Ultrasonic Atomizer
,”
Int. J. Hydrogen Energy
,
35
(
5
), pp.
1895
1904
.
56.
Naterer
,
G.
,
Suppiah
,
S.
,
Lewis
,
M.
,
Gabriel
,
K.
,
Dincer
,
I.
,
Rosen
,
M. A.
,
Fowler
,
M.
, et al
,
2009
, “
Recent Canadian Advances in Nuclear-Based Hydrogen Production and the Thermochemical Cu–Cl Cycle
,”
Int. J. Hydrogen Energy
,
34
(
7
), pp.
2901
2917
.
57.
Lewis
,
M. A.
, and
Masin
,
J. G.
,
2009
, “
The Evaluation of Alternative Thermochemical Cycles—Part II: The Down-Selection Process
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
4125
4135
.
58.
Zhang
,
D.
,
Hang
,
P.
, and
Liu
,
G.
,
2020
, “
Recycle Optimization of an Ethylene Oxide Production Process Based on the Integration of Heat Exchanger Network and Reactor
,”
J. Cleaner Prod.
,
275
, p.
122773
.
59.
Orhan
,
M. F.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2013
, “
Design and Simulation of a UOIT Copper-Chlorine Cycle for Hydrogen Production
,”
Int. J. Energy Res.
,
37
(
10
), pp.
1160
1174
.
60.
Ozbilen
,
A.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2014
, “
Development of New Heat Exchanger Network Designs for a Four-Step Cu-Cl Cycle for Hydrogen Production
,”
Energy
,
77
, pp.
338
351
.
61.
Daggupati
,
V. N.
,
Naterer
,
G. F.
, and
Dincer
,
I.
,
2011
, “
Convective Heat Transfer and Solid Conversion of Reacting Particles in a Copper(II) Chloride Fluidized Bed
,”
Chem. Eng. Sci.
,
66
(
3
), pp.
460
468
.
62.
Lee
,
J. B.
, and
Mills
,
B.
,
2022
, “
Numerical Investigation of the Thermal Performance of Multistage Falling Particle Receivers at Commercial Scales
,”
Int. J. Heat Mass Transfer
,
199
, p.
123417
.
63.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2019
, “
Design and Operating Considerations for a Shell-and-Plate, Moving Packed-Bed, Particle-to-SCO2 Heat Exchanger
,”
Sol. Energy
,
178
, pp.
331
340
.
64.
Van Antwerpen
,
W.
,
Du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2010
, “
A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-Sized Spherical Particles
,”
Nucl. Eng. Des.
,
240
(
7
), pp.
1803
1818
.
65.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
(Part B), pp.
958
969
.
66.
Rasouli
,
E.
,
Naderi
,
C.
, and
Narayanan
,
V.
,
2018
, “
Pitch and Aspect Ratio Effects on Single-Phase Heat Transfer Through Microscale Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
118
, pp.
416
428
.
67.
Wang
,
X.
,
Del Rincon
,
J.
,
Li
,
P.
,
Zhao
,
Y.
, and
Vidal
,
J.
,
2021
, “
Thermophysical Properties Experimentally Tested for NaCl-KCl-MgCl2 Eutectic Molten Salt as a Next-Generation High-Temperature Heat Transfer Fluid in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041005
.
68.
Wilcox
,
S.
, and
Marion
,
W.
,
2008
,
Users Manual for TMY3 Data Sets
,
National Renewable Energy Laboratory
,
Golden, CO
.
69.
Badescu
,
V.
,
2018
, “
How Much Work Can Be Extracted From Diluted Solar Radiation?
,”
Sol. Energy
,
170
, pp.
1095
1100
.
70.
Weiland
,
N. T.
,
Lance
,
B. W.
, and
Pidaparti
,
S. R.
,
2019
, “
SCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, Paper No. GT2019-90493.
71.
Fernández-Torrijos
,
M.
,
González-Gómez
,
P. A.
,
Sobrino
,
C.
, and
Santana
,
D.
,
2021
, “
Economic and Thermo-Mechanical Design of Tubular SCO2 Central-Receivers
,”
Renewable Energy
,
177
, pp.
1087
1101
.
72.
Buck
,
R.
, and
Giuliano
,
S.
,
2018
, “
Impact of CSP Design Parameters on SCO2-Based Solar Tower Plants
,”
Proceedings of the 2nd European Supercritical CO2 Conference
,
Essen, Germany
,
Aug. 30–31
, pp.
1
8
.
73.
Villada
,
C.
,
Ding
,
W.
,
Bonk
,
A.
, and
Bauer
,
T.
,
2021
, “
Engineering Molten MgCl2–KCl–NaCl Salt for High-Temperature Thermal Energy Storage: Review on Salt Properties and Corrosion Control Strategies
,”
Sol. Energy Mater. Sol. Cells
,
232
, p.
111344
.
74.
“SAM CSP Models—System Advisor Model—SAM,”
2024
, https://sam.nrel.gov/concentrating-solar-power.html, Accessed June 17, 2024.
75.
González-Portillo
,
L. F.
,
Albrecht
,
K. J.
,
Sment
,
J.
,
Mills
,
B.
, and
Ho
,
C. K.
,
2022
, “
Sensitivity Analysis of the Levelized Cost of Electricity for a Particle-Based Concentrating Solar Power System
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
030902
.
76.
Guccione
,
S.
,
Fontalvo
,
A.
,
Guedez
,
R.
,
Pye
,
J.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2022
, “
Techno-Economic Optimisation of a Sodium–Chloride Salt Heat Exchanger for Concentrating Solar Power Applications
,”
Sol. Energy
,
239
, pp.
252
267
.
77.
Wu
,
Z.
,
Zhu
,
P.
,
Yao
,
J.
,
Zhang
,
S.
,
Ren
,
J.
,
Yang
,
F.
, and
Zhang
,
Z.
,
2020
, “
Combined Biomass Gasification, SOFC, IC Engine, and Waste Heat Recovery System for Power and Heat Generation: Energy, Exergy, Exergoeconomic, Environmental (4E) Evaluations
,”
Appl. Energy
,
279
, p.
11579
.
78.
Temiz
,
M.
, and
Dincer
,
I.
,
2021
, “
Concentrated Solar Driven Thermochemical Hydrogen Production Plant With Thermal Energy Storage and Geothermal Systems
,”
Energy
,
219
, p.
119554
.
You do not currently have access to this content.