Abstract

Flow-boiling heat transfer characteristics of Refrigerant 32 on the outside surface of a three-dimensional diamond-shaped enhanced copper tube have been experimentally investigated. One enhanced tube has been studied along with a smooth tube (ST tube) of the same diameter for comparison purposes. The enhanced tube has diamond stripes and spherical patterns on its surface and is referred to here as the LEHT tube. Experimental conditions included saturation temperatures of 279, 283, and 288 K; average vapor qualities ranging from 0.2 to 0.8; and mass fluxes ranging from 70 to 230 kg/(m2 s). Both the heat transfer coefficient and the frictional pressure drop in the LEHT tube were found to increase with an increase in the mass flux. For the smooth tube, the effect of the average vapor quality on the heat transfer coefficient was found to be less significant compared to that of the LEHT tube. The heat transfer coefficient of the LEHT tube was also found to first increase and then decrease as the vapor quality increased. Finally, the frictional pressure drop in both tubes has been found to be inversely proportional to the saturation temperature, with the saturation temperature having little impact on the heat transfer coefficient. Gungor and Winterton's correlation was modified and fitted to the experimental data for the heat transfer coefficient to produce a new correlation for the LEHT tube.

References

1.
Kukulka
,
D. J.
,
Smith
,
R.
, and
Fuller
,
K. G.
,
2011
, “
Development and Evaluation of Enhanced Heat Transfer Tubes
,”
Appl. Therm. Eng.
,
31
(
13
), pp.
2141
2145
.
2.
Kukulka
,
D. J.
,
Smith
,
R.
, and
Li
,
W.
,
2014
, “
Condensation and Evaporation Characteristics of Vipertex 1EHT Enhanced Heat Transfer Tubes
,”
Chem. Eng. Trans.
,
39
, pp.
727
732
.
3.
Kukulka
,
D. J.
,
Smith
,
R.
,
Li
,
W.
,
Zhang
,
A. F.
, and
Yan
,
H.
,
2018
, “
Condensation and Evaporation Characteristics of Flows Inside Vipertex 1EHT and 4EHT Small Diameter Enhanced Heat Transfer Tubes
,”
Chem. Eng. Trans.
,
70
, pp.
13
18
.
4.
Ma
,
X.
,
Li
,
W.
,
Zhang
,
C. C.
,
Sun
,
Z. C.
,
Kukulka
,
D. J.
,
He
,
Y.
,
Kim
,
N. H.
, and
Zhang
,
Z. X.
,
2020
, “
Condensation and Evaporation Heat Transfer Characteristics of Low Mass Fluxes in Horizontal Smooth Tube and Three-Dimensional Enhanced Tubes
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021016
.
5.
Li
,
Z.
,
Liu
,
S. Q.
,
Zhang
,
J. H.
, and
Zhang
,
L.
,
2021
, “
Evaporation Heat Transfer of R134a on Outside of Smooth and Enhanced Tubes
,”
Heat Transfer Eng.
,
42
(
9
), pp.
749
763
.
6.
Sun
,
Z. C.
,
Li
,
W.
,
Ma
,
X.
,
Ayub
,
Z.
, and
He
,
Y.
,
2019
, “
Flow Boiling in Horizontal Annuli Outside Horizontal Smooth, Herringbone and Three-Dimensional Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
143
, p.
118554
.
7.
Zhang
,
J. H.
,
Wang
,
J. C.
,
He
,
Y.
,
Liu
,
L.
,
Li
,
W.
,
Tang
,
W. Y.
,
Abbas
,
A.
, and
Ayub
,
Z.
,
2022
, “
R410A Flow Boiling Coefficient in Horizontal Annular Channels of Enhanced Tubes, Part II: Heat Transfer
,”
Int. J. Refrig.
,
137
, pp.
43
50
.
8.
Li
,
W.
,
Chen
,
J. X.
,
Zhu
,
H.
,
Kukulka
,
D. J.
, and
Minkowycz
,
W. J.
,
2017
, “
Experimental Study on Condensation and Evaporation Flow Inside Horizontal Three Dimensional Enhanced Tubes
,”
Int. Commun. Heat Mass Transfer
,
80
, pp.
30
40
.
9.
Wu
,
J. J.
,
He
,
Y.
,
Li
,
W.
,
Dong
,
Z. G.
,
Kedzierski
,
M. A.
, and
Cao
,
Y. L.
,
2023
, “
Flow Boiling in Inner Annulus of Horizontal Enhanced Tubes
,”
Int. J. Multiphase Flow
,
160
, p.
104367
.
10.
Ma
,
X.
,
Ji
,
X. Y.
,
Wang
,
J. Y.
,
Fang
,
J. B.
,
Zhang
,
Y. H.
, and
Wei
,
J. J.
,
2022
, “
Flow Boiling Heat Transfer Characteristics on Micro-Pin-Finned Surfaces in a Horizontal Narrow Microchannel
,”
Int. J. Heat Mass Transfer
,
194
, p.
123071
.
11.
Li
,
W.
,
Gao
,
Y.
,
Wang
,
J. C.
,
Sun
,
Z. C.
,
Ma
,
X.
,
Tang
,
W. Y.
,
Ayub
,
Z.
,
He
,
Y.
, and
Cao
,
Y. L.
,
2022
, “
Evaporation Flow Patterns and Heat Transfer in Copper and Stainless Steel Three-Dimensional Dimpled Tubes
,”
Int. J. Heat Mass Transfer
,
193
, p.
122954
.
12.
Dong
,
Z. G.
,
Zhang
,
J. H.
,
Li
,
Z.
,
Wang
,
J. C.
,
Liu
,
S. Q.
, and
He
,
Y.
,
2022
, “
Forced Convection Heat Transfer Outside Enhanced Tubes With Different Surface Structures
,”
Heat Transfer Eng.
,
43
(
14
), pp.
1222
1240
.
13.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
14.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. J. Chem. Eng.
,
16
(
2
), pp.
8
16
. https://ui.adsabs.harvard.edu/abs/1975STIA...7522028G/abstract
15.
Petukhov
,
B. S.
, and
Kirilov
,
V. V.
,
1958
, “
The Problem of Heat Exchange in the Turbulent Flow of Liquids in Tubes
,”
Teploenergetika
,
4
(
4
), pp.
63
68
.
16.
Wilson
,
E. E.
,
1915
, “
A Basis for Rational Design of Heat Transfer Apparatus
,”
ASME J. Fluids Eng.
,
37
, pp.
47
70
.
17.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1995
, “
95/03868 Convective Boiling and Condensation
,”
Fuel Energy Abstr.
,
36
(
4
), p.
277
.
18.
Li
,
W.
,
Sun
,
Z. C.
,
Guo
,
R. H.
,
Ma
,
X.
,
Liu
,
Z. C.
,
Kukulka
,
D. J.
,
Ayub
,
Z.
,
Chen
,
W.
, and
He
,
Y.
,
2019
, “
Condensation Heat Transfer of R410A on Outside of Horizontal Smooth and Three-Dimensional Enhanced Tubes
,”
Int. J. Refrig.
,
98
, pp.
1
14
.
19.
Gungor
,
K. E.
, and
Winterton
,
R.
,
1987
, “
Simplified General Correlation for Saturated Flow Boiling and Comparisons of Correlations With Data
,”
Chem. Eng. Res. Des.
,
65
, pp.
148
156
. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8366451
20.
Liu
,
Z.
, and
Winterton
,
R. H. S.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
.
21.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
219
228
.
You do not currently have access to this content.