Abstract

The thermohydraluic performance (THP) evaluation of roughened absorber plate in the form of continuous transverse sinusoidal with protrusion ribs (CTSPR) of a solar air heater (SAH) was investigated numerically and experimentally. The performance metrics Nusselt number (Nu), friction factor, and THP have been assessed for roughness pitches of 10 mm, 14 mm, and 18 mm, roughness height near the sublayer thickness of 1 mm, and Reynolds numbers ranging from 4000 to 15,000. Additionally, the present model (CTSPR model) has been also compared with the past research model i.e., continuous transverse sinusoidal rib (CTSR model) in the graphical form. The effect of various paths of fluid, temperature, and vortexes on heat transfer has been explained in the present research. Observations indicate that the thermohydraluic performance parameters of the CTSPR model are higher than those of the CTSR model across the investigated parameter range. An ideal value of THP has been achieved with a roughness pitch of 10 mm, a roughness height of 1 mm, and a Reynolds number of 4000. Validation of computational results of the optimum model of the CTSPR model is conducted by comparing them with experimental outcomes. The experimental testing results of the Nusselt number and the friction factor exhibit individual variations of 6.36% and 3.97%, respectively, from computational results.

References

1.
Nikuradse
,
J.
,
1950
, “
Laws of Flow in Rough Pipes
,” https://ntrs.nasa.gov/citations/19930093938
2.
Prasad
,
B. N.
, and
Saini
,
J. S.
,
1988
, “
Effect of Artificial Roughness on Heat Transfer and Friction Factor in a Solar Air Heater
,”
Sol. Energy
,
41
(
6
), pp.
555
560
.
3.
Verma
,
S. K.
, and
Prasad
,
B. N.
,
2000
, “
Investigation for the Optimal Thermohydraulic Performance of Artificially Roughened Solar Air Heaters
,”
Renewable Energy
,
20
(
1
), pp.
19
36
.
4.
Kumar
,
R.
,
Kumar
,
A.
, and
Varun
,
V.
,
2017
, “
Computational Fluid Dynamics Based Study for Analyzing Heat Transfer and Friction Factor in Semi-Circular Rib-Roughened Equilateral Triangular Duct
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
4
), pp.
941
957
.
5.
Ranjan
,
R.
,
Paswan
,
M. K.
, and
Prasad
,
N.
,
2017
, “
CFD Based Analysis of a Solar Air Heater Having Isosceles Right Triangle Rib Roughness on the Absorber Plate
,”
Int. Energy J.
,
17
(
2
), pp.
57
74
.
6.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A Numerical Investigation of Square Sectioned Transverse Rib Roughened Solar Air Heater
,”
Int. J. Therm. Sci.
,
79
(
1
), pp.
111
131
.
7.
Chang
,
Y.
,
Xue
,
Y.
, and
Geng
,
G.
,
2024
, “
Effect of the Baffle's Type on Thermal Performance of Solar Air Heaters
,”
Case Stud. Therm. Eng.
,
59
(
1
), p.
104580
.
8.
Debnath
,
S.
,
Das
,
B.
, and
Randive
,
P.
,
2019
, “
Influences of Pentagonal Ribs on the Performance of Rectangular Solar Air Collector
,”
Energy Procedia
,
158
(
1
), pp.
1168
1173
.
9.
Sutar
,
S.
,
Rout
,
S. K.
,
Senapati
,
J. R.
,
Barik
,
D.
,
Dennison
,
M. S.
, and
Praveenkumar
,
S.
,
2024
, “
Numerical Investigation on the Thermohydraulic Performance of a Solar Air Heater Duct Featuring Parabolic Rib Turbulators on the Absorber Plate
,”
Case Stud. Therm. Eng.
,
64
(
1
), p.
105399
.
10.
Thakur
,
D. S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2017
, “
Performance Evaluation of Solar Air Heater With Novel Hyperbolic Rib Geometry
,”
Renewable Energy
,
105
(
1
), pp.
786
797
.
11.
Kumar
,
S.
, and
Verma
,
S. K.
,
2024
, “
Three-Dimensional Simulation and Experimental Validation of Solar Air Heater Having Sinusoidal Rib
,”
Energy Sources, Part A
,
46
(
1
), pp.
16865
16883
.
12.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2021
, “
Thermo-Hydraulic Performance Analysis of a Solar Air Heater (SAH) With Quarter-Circular Ribs on the Absorber Plate: A Comparative Study
,”
Int. J. Therm. Sci.
,
161
(
1
), p.
106747
.
13.
Bhagoria
,
J. L.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer Coefficient and Friction Factor Correlations for Rectangular Solar Air Heater Duct Having Transverse Wedge Shaped Rib Roughness on the Absorber Plate
,”
Renewable Energy
,
25
(
3
), pp.
341
369
.
14.
Boulemtafes-Boukadoum
,
A.
, and
Benzaoui
,
A. J. E. P.
,
2014
, “
CFD Based Analysis of Heat Transfer Enhancement in Solar Air Heater Provided With Transverse Rectangular Ribs
,”
Energy Procedia
,
50
(
1
), pp.
761
772
.
15.
Saravanan
,
A.
,
Murugan
,
M.
,
Reddy
,
M. S.
,
Ranjit
,
P. S.
,
Elumalai
,
P. V.
,
Kumar
,
P.
, and
Sree
,
S. R.
,
2021
, “
Thermo-Hydraulic Performance of a Solar Air Heater With Staggered C-Shape Finned Absorber Plate
,”
Int. J. Therm. Sci.
,
168
(
1
), p.
107068
.
16.
Nidhul
,
K.
,
Yadav
,
A. K.
,
Anish
,
S.
, and
Arunachala
,
U. C.
,
2022
, “
Thermo-Hydraulic and Exergetic Performance of a Cost-Effective Solar Air Heater: CFD and Experimental Study
,”
Renewable Energy
,
184
(
1
), pp.
627
641
.
17.
Wang
,
D.
,
Liu
,
J.
,
Liu
,
Y.
,
Wang
,
Y.
,
Li
,
B.
, and
Liu
,
J.
,
2020
, “
Evaluation of the Performance of an Improved Solar Air Heater with “S” Shaped Ribs With Gap
,”
Sol. Energy
,
195
(
1
), pp.
89
101
.
18.
Dong
,
Z.
,
Liu
,
P.
,
Xiao
,
H.
,
Liu
,
Z.
, and
Liu
,
W.
,
2021
, “
A Study on Heat Transfer Enhancement for Solar Air Heaters With Ripple Surface
,”
Renewable Energy
,
172
(
1
), pp.
477
487
.
19.
Aldawi
,
F.
,
2024
, “
Effect of Spring-Wire Turbulators With Different Shapes on Heat Transfer Improvement of Solar Air Heaters; a Numerical Simulation
,”
Clean. Eng. Technol.
,
21
(
1
), p.
100777
.
20.
Alam
,
T.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2014
, “
Experimental Investigation on Heat Transfer Enhancement Due to V-Shaped Perforated Blocks in a Rectangular Duct of Solar Air Heater
,”
Energy Convers. Manage.
,
81
(
1
), pp.
374
383
.
21.
Karwa
,
R.
,
2022
, “
Enhanced Heat Transfer Performance of Multiple Triangular Air Flow Passages in Parallel With Inclined Fins for Flat Plate Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051003
.
22.
Yadav
,
S.
,
Kaushal
,
M.
,
Varun
,
G.
, and
Siddhartha
,
A.
,
2013
, “
Nusselt Number and Friction Factor Correlations for Solar Air Heater Duct Having Protrusions as Roughness Elements on Absorber Plate
,”
Exp. Therm. Fluid. Sci.
,
44
(
1
), pp.
34
41
.
23.
Singh
,
D.
, and
Kumar
,
V.
,
2024
, “
Response Surface-Based Optimization of Thermal Characteristics for Frustum Roughened Solar Air Heater: An Experimental and Numerical Study
,”
Int. J. Heat Fluid Flow
,
108
(
1
), p.
109479
.
24.
Sharma
,
S.
,
Dutta
,
V.
, and
Eswaramoorthy
,
M.
,
2020
, “
An Experimental Investigation on Multi-V and Protrusion Element on Absorber Plate of Solar air Heater
,”
Energy Sources, Part A
,
42
(
22
), pp.
2742
2750
.
25.
Kumar
,
R.
,
Nadda
,
R.
,
Rana
,
A.
,
Chauhan
,
R.
, and
Chandel
,
S. S.
,
2020
, “
Performance Investigation of a Solar Thermal Collector Provided With Air Jets Impingement on Multi V-Shaped Protrusion Ribs Absorber Plate
,”
Heat Mass Transfer
,
56
(
3
), pp.
913
930
.
26.
Li
,
M.
,
Chen
,
X.
, and
Ruan
,
X.
,
2020
, “
Investigation of Flow Structure and Heat Transfer Enhancement in Rectangular Channels With Dimples and Protrusions Using Large Eddy Simulation
,”
Int. J. Therm. Sci.
,
149
(
1
), p.
106207
.
27.
J. E.
,
Matsson
,
2022
,
An Introduction to ANSYS Fluent 2022
,
Sdc Publications
.
28.
Ozisik
,
M. N.
,
1985
,
Heat Transfer: A Basic Approach
,
McGraw-Hill
,
New York
.
29.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.
30.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
31.
Fox
,
W.
,
Pritchard
,
P.
, and
McDonald
,
A.
,
2010
,
“Introduction to Fluid Mechanics
,
Wiley
,
New York
.
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
33.
ASHRAE Standard
,
1977
, Methods of Testing to Determine the Thermal Performance of Solar Collectors, American Society of Heating, 93-77.
You do not currently have access to this content.