Abstract

It is important to analyze the variables influencing the performance of the solar chimney power plant (SCPP) according to output power as well as efficiency. The most important of these variables is the geometric dimensions, solar radiation intensity, and ambient temperature. In this experimental and numerical study, a prototype with variable dimensions was manufactured. A theoretical study was presented by creating a numerical model that helps in analyzing the governing equations, such as the continuity, momentum, and energy equations, in addition to the turbulence model equations (k–ε). The calculations show the influence of chimney height, diameter, solar collector diameter, inlet collector gap, temperature, and solar radiation on the SCPP performance. These variables were also tested experimentally, and the effect of each variable on the efficiency and output power was demonstrated. The maximum velocity was at the turbine exit, about 18.5 m/s in the case of the Spanish model, while it was 2.2 m/s for the present prototype. The maximum temperature value was 333 K for the Spanish model at a collector radius ratio of 3. The maximum output power was 156 mW for the Spanish model. For the current prototype, the maximum airflow temperature was 67 °C when the chimney height was 3 m; by decreasing the chimney height to 2.5 and 2 m, the maximum temperature decreased to 63 and 54 °C, respectively, which are about 6.5% and 19% deterioration. The results show that the relationship between the output power and any of the geometric dimensions is direct. The overall efficiency relationship is direct with the height and diameter of the chimney and inverse with the diameter of the collector and the height of the collector entrance. The output power rises with increasing solar radiation and slightly drops with increasing ambient temperature. The reliability of the numerical solution was verified by comparing the numerical and experimental results, as well as the data of the Spanish model. The agreement was satisfactory, with the mean percentage error (MPE) not exceeding 1.5% for all performance parameters.

References

1.
Shahsavari
,
A.
, and
Akbari
,
M.
,
2018
, “
Potential of Solar Energy in Developing Countries for Reducing Energy-Related Emissions
,”
Renewable Sustainable Energy Rev.
,
90
, pp.
275
291
.
2.
Al-Ghezi
,
M. K.
,
Ahmed
,
R. T.
, and
Chaichan
,
M. T.
,
2022
, “
The Influence of Temperature and Irradiance on Performance of the Photovoltaic Panel in the Middle of Iraq
,”
Int. J. Renewable Energy Dev.
,
11
(
2
), pp.
501
513
.
3.
Al-Ghezi
,
M. K.
,
Abass
,
K. I.
,
Salam
,
A. Q.
,
Jawad
,
R. S.
, and
Kazem
,
H. A.
,
2021
, “
The Possibilities of Using Nano-CuO as Coolants for PVT System: An Experimental Study
,”
J. Phys.: Conf. Ser.
,
1973
(
1
), p.
012123
.
4.
Rezaei
,
L.
,
Saeidi
,
S.
,
Sápi
,
A.
,
Senoukesh
,
M. A.
,
Gróf
,
G.
,
Chen
,
W.-H.
,
Kónya
,
Z.
, and
Klemeš
,
J. J.
,
2023
, “
Efficiency Improvement of the Solar Chimneys by Insertion of Hanging Metallic Tubes in the Collector: Experiment and Computational Fluid Dynamics Simulation
,”
J. Cleaner Prod.
,
415
, p.
137692
.
5.
Cuce
,
E.
,
Cuce
,
P. M.
,
Carlucci
,
S.
,
Sen
,
H.
,
Sudhakar
,
K.
,
Hasanuzzaman
,
M.
, and
Daneshazarian
,
R.
,
2022
, “
Solar Chimney Power Plants: A Review of the Concepts, Designs and Performances
,”
Sustainability
,
14
(
3
), p.
1450
.
6.
Lipnicki
,
Z.
,
Gortych
,
M.
,
Staszczuk
,
A.
,
Kuczyński
,
T.
, and
Grabas
,
P.
,
2019
, “
Analytical and Experimental Investigation of the Solar Chimney System
,”
Energies
,
12
(
11
), p.
2060
.
7.
Schlaich
,
J.
,
Schiel
,
W.
, and
Friedrich
,
K.
,
1990
, “
Ubertrag Barkeit der Ergebnisse von Manzanares auf Grosere Anlagen
,” Abschlusbericht Aufwindkraftwerk.
8.
Haaf
,
W.
,
Friedrich
,
K.
,
Mayr
,
G.
, and
Schlaich
,
J.
,
1983
, “
Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares
,”
Int. J. Sol. Energy
,
2
(
1
), pp.
3
20
.
9.
Mandal
,
D. K.
,
Pradhan
,
S.
,
Chakraborty
,
R.
,
Barman
,
A.
, and
Biswas
,
N.
,
2022
, “
Experimental Investigation of a Solar Chimney Power Plant and Its Numerical Verification of Thermo-Physical Flow Parameters for Performance Enhancement
,”
Sustain. Energy Technol. Assess.
,
50
, p.
101786
.
10.
Golzardi
,
S.
,
Mehdipour
,
R.
, and
Baniamerian
,
Z.
,
2021
, “
How Collector Entrance Influences the Solar Chimney Performance: Experimental Assessment
,”
J. Therm. Anal. Calorim.
,
146
(
2
), pp.
813
826
.
11.
Şen
,
H.
,
Cüce
,
A. P. M.
, and
Cüce
,
E.
,
2021
, “
Impacts of Collector Radius and Height on Performance Parameters of Solar Chimney Power Plants: A Case Study for Manzanares, Spain
,”
Recep Tayyip Erdoğan Üniv. J. Sci. Eng.
,
2
(
2
), pp.
83
104
.
12.
Adamsab
,
K.
,
Vega
,
E.
, and
Al-Hinai
,
A. H.
,
2022
, “
An Experimental Investigation of a Small-Scale Solar Updraft Tower in the Sultanate of Oman
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
93
(
1
), pp.
212
221
.
13.
Cuce
,
P. M.
,
Saxena
,
A.
,
Cuce
,
E.
,
Kontoleon
,
K. J.
,
Oztekin
,
E. K.
,
Shaik
,
S.
, and
Guo
,
S.
,
2024
, “
Thermal and Energy Analysis of a Novel Solar Updraft Tower Design With Divergent Chimney and Convergent Collector Concept: CFD Analysis With Experimental Validation
,”
Int. J. Low Carbon Technol.
,
19
, pp.
714
722
.
14.
Biswas
,
N.
,
Mandal
,
D. K.
,
Bose
,
S.
,
Manna
,
N. K.
, and
Benim
,
A. C.
,
2023
, “
Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review
,”
Energies
,
16
(
17
), p.
6134
.
15.
Zhou
,
X.
,
Yang
,
J.
,
Xiao
,
B.
, and
Hou
,
G.
,
2007
, “
Experimental Study of Temperature Field in a Solar Chimney Power Setup
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
2044
2050
.
16.
Koonsrisuk
,
A.
, and
Chitsomboon
,
T.
,
2007
, “
Dynamic Similarity in Solar Chimney Modeling
,”
Sol. Energy
,
81
(
12
), pp.
1439
1446
.
17.
Al-Ghezi
,
M. K.
,
Mahmoud
,
B. K.
,
Alnasser
,
T.
, and
Chaichan
,
M. T.
,
2022
, “
A Comparative Study of Regression Models and Meteorological Parameters to Estimate the Global Solar Radiation on a Horizontal Surface for Baghdad City, Iraq
,”
Int. J. Renewable Energy Dev.
,
11
(
1
), pp.
71
81
.
18.
Wang
,
J.
,
Guo
,
J.
,
Liu
,
C.
,
Li
,
Y.
, and
Li
,
C.
,
2024
, “
Experimental Investigation and Mathematical Modelling of the Heat and Mass Transfer Processes in a Solar Chimney
,”
Renewable Energy
,
237
(
Part A
), p.
121540
.
19.
Rajaee
,
F.
,
Kasaeian
,
A.
,
Rad
,
M. A. V.
, and
Aliyon
,
K.
,
2021
, “
Energetic and Exergetic Evaluation of a Photovoltaic Thermal Module Cooled by Hybrid Nanofluids in the Microchannel
,”
Sol. Energy Adv.
,
1
, p.
100005
.
20.
Schlaich
,
J.
,
1995
,
The Solar Chimney: Electricity From the Sun
,
Edition Axel Menges
,
Stuttgart, Germany
.
21.
Shariatzadeh
,
O. J.
,
Refahi
,
A. H.
,
Abolhassani
,
S. S.
, and
Rahmani
,
M.
,
2015
, “
Modeling and Optimization of a Novel Solar Chimney Cogeneration Power Plant Combined With Solid Oxide Electrolysis/Fuel Cell
,”
Energy Convers. Manage.
,
105
, pp.
423
432
.
22.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley & Sons
,
New York
.
23.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
New York
.
24.
Lal
,
S.
,
Kaushik
,
S. C.
, and
Hans
,
R.
,
2016
, “
Experimental Investigation and CFD Simulation Studies of a Laboratory Scale Solar Chimney for Power Generation
,”
Sustain. Energy Technol. Assess.
,
13
, pp.
13
22
.
25.
Okoye
,
C. O.
, and
Taylan
,
O.
,
2017
, “
Performance Analysis of a Solar Chimney Power Plant for Rural Areas in Nigeria
,”
Renewable Energy
,
104
, pp.
96
108
.
26.
Guo
,
P.
,
Li
,
J.
,
Wang
,
Y.
, and
Wang
,
Y.
,
2016
, “
Evaluation of the Optimal Turbine Pressure Drop Ratio for a Solar Chimney Power Plant
,”
Energy Convers. Manage.
,
108
, pp.
14
22
.
27.
Wang
,
J.
,
Nie
,
J.
,
Jia
,
J.
,
Su
,
H.
,
Tian
,
R.
,
Yan
,
S.
, and
Gao
,
H.
,
2022
, “
Structural Optimization to Reduce the Environmental Crosswind Negative Influence on the Performance of a Solar Chimney Power Plant System
,”
Sol. Energy
,
241
, pp.
693
711
.
28.
Zhou
,
X.
,
Yang
,
J.
,
Xiao
,
B.
, and
Hou
,
G.
,
2007
, “
Simulation of a Pilot Solar Chimney Thermal Power Generating Equipment
,”
Renewable Energy
,
32
(
10
), pp.
1637
1644
.
29.
Ming
,
T.
,
Liu
,
W.
,
Pan
,
Y.
, and
Xu
,
G.
,
2008
, “
Numerical Analysis of Flow and Heat Transfer Characteristics in Solar Chimney Power Plants With Energy Storage Layer
,”
Energy Convers. Manage.
,
49
(
10
), pp.
2872
2879
.
30.
Von Backström
,
T. W.
, and
Fluri
,
T. P.
,
2006
, “
Maximum Fluid Power Condition in Solar Chimney Power Plants–An Analytical Approach
,”
Sol. Energy
,
80
(
11
), pp.
1417
1423
.
31.
Liu
,
F.-B.
, and
Tsai
,
Y.-C.
,
2010
, “
An Experimental and Numerical Investigation of Fluid Flow in a Cross-Corrugated Channel
,”
Heat Mass Transfer
,
46
(
5
), pp.
585
593
.
32.
Holman
,
J. P.
,
1981
,
Heat Transfer
, 5th ed.,
McGraw-Hill
,
New York
.
33.
Nasirivatan
,
S.
,
Kasaeian
,
A.
,
Ghalamchi
,
M.
, and
Ghalamchi
,
M.
,
2015
, “
Performance Optimization of Solar Chimney Power Plant Using Electric/Corona Wind
,”
J. Electrostat.
,
78
, pp.
22
30
.
34.
Li
,
H. S.
,
Ma
,
W. B.
,
Bu
,
X. B.
,
Lian
,
Y. W.
, and
Wang
,
X. L.
,
2013
, “
A Multiple Linear Regression Model for Estimating Global Solar Radiation in Guangzhou, China
,”
Energy Sources, Part A
,
35
(
4
), pp.
321
327
.
You do not currently have access to this content.