Abstract

In a quest to improve the efficiency of the existing parabolic solar water heater, many novel approaches have been adopted. In the present study, a solar parabolic trough collector augmented with a rotating receiver tube is analyzed experimentally. For this, a conventional parabolic trough collector is modified to introduce rotation to the receiver tube via a rotary union and high-torque gear motor (12 V direct current (DC)). Manual tracking is adopted with the help of a solar tracking pin to ensure uniform and normal solar irradiation over the aperture of the parabolic trough collector. A robust data acquisition system is used to capture experimental data via an eight-channel digital data logger with the help of PT-100 thermocouples. The results suggest that, with the rotation of the receiver tube, there is an enhancement in the outlet temperature from the solar collector when the mass flowrate is high (>0.3 lpm), while there is a deterioration in the corresponding outlet temperature with a lower mass flowrate. An enhancement in the outlet temperature of around 65.56% and thermal efficiency of around 21% is observed when the rotational speed increases from 0 rpm to 5 rpm. Moreover, in the rotary motion of the receiver tube, the maximum temperature difference (ΔTmax) is observed at the minimum mass flowrate of 0.1 lpm, resulting in values of 14.72 °C, 17.76 °C, and 20.05 °C for rotational speeds of 1 rpm, 3 rpm, and 5 rpm, respectively. The results suggest that this novel rotating parabolic trough collector can enhance the performance of existing parabolic trough collectors and contribute to harvesting solar energy more efficiently.

References

1.
Panwar
,
N. L.
,
Kaushik
,
S. C.
, and
Kothari
,
S.
,
2011
, “
Role of Renewable Energy Sources in Environmental Protection: A Review
,”
Renew. Sustain. Energy Rev.
,
15
(
3
), pp.
1513
1524
.
2.
Olabi
,
A. G.
, and
Abdelkareem
,
M. A.
,
2022
, “
Renewable Energy and Climate Change
,”
Renew. Sustain. Energy Rev.
,
158
, p.
112111
.
3.
Gielen
,
D.
,
Boshell
,
F.
,
Saygin
,
D.
,
Bazilian
,
M. D.
,
Wagner
,
N.
, and
Gorini
,
R.
,
2019
, “
The Role of Renewable Energy in the Global Energy Transformation
,”
Energy Strategy Rev.
,
24
, pp.
38
50
.
4.
Zhao
,
J.
,
Patwary
,
A. K.
,
Qayyum
,
A.
,
Alharthi
,
M.
,
Bashir
,
F.
,
Mohsin
,
M.
,
Hanif
,
I.
, and
Abbas
,
Q.
,
2022
, “
The Determinants of Renewable Energy Sources for the Fueling of Green and Sustainable Economy
,”
Energy
,
238
(
Part C
), p.
122029
.
5.
Kannan
,
N.
, and
Vakeesan
,
D.
,
2016
, “
Solar Energy for Future World—A Review
,”
Renew. Sustain. Energy Rev.
,
62
, pp.
1092
1105
.
6.
Siva Reddy
,
V.
,
Kaushik
,
S. C.
,
Ranjan
,
K. R.
, and
Tyagi
,
S. K.
,
2013
, “
State-of-the-Art of Solar Thermal Power Plants—A Review
,”
Renew. Sustain. Energy Rev.
,
27
, pp.
258
273
.
7.
Ahmadi
,
A.
,
Ehyaei
,
M. A.
,
Doustgani
,
A.
,
El Haj Assad
,
M.
,
Hmida
,
A.
,
Jamali
,
D. H.
,
Kumar
,
R.
,
Li
,
Z. X.
, and
Razmjoo
,
A.
,
2021
, “
Recent Residential Applications of Low-Temperature Solar Collector
,”
J. Clean. Prod.
,
279
, p.
123549
.
8.
Abed
,
N.
, and
Afgan
,
I.
,
2020
, “
An Extensive Review of Various Technologies for Enhancing the Thermal and Optical Performances of Parabolic Trough Collectors
,”
Int. J. Energy Res.
,
44
(
7
), pp.
5117
5164
.
9.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
.
10.
Suman
,
S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2015
, “
Performance Enhancement of Solar Collectors—A Review
,”
Renew. Sustain. Energy Rev.
,
49
, pp.
192
210
.
11.
Liu
,
M.
,
Steven Tay
,
N. H.
,
Bell
,
S.
,
Belusko
,
M.
,
Jacob
,
R.
,
Will
,
G.
,
Saman
,
W.
, and
Bruno
,
F.
,
2016
, “
Review on Concentrating Solar Power Plants and New Developments in High Temperature Thermal Energy Storage Technologies
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
1411
1432
.
12.
Upadhyay
,
B. H.
,
Patel
,
A. J.
, and
Ramana
,
P. V.
,
2022
, “
A Detailed Review on Solar Parabolic Trough Collector
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
176
196
.
13.
Jebasingh
,
V. K.
, and
Herbert
,
G. M. J.
,
2016
, “
A Review of Solar Parabolic Trough Collector
,”
Renew. Sustain. Energy Rev.
,
54
, pp.
1085
1091
.
14.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
15.
Manikandan
,
G. K.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2019
, “
Enhancing the Optical and Thermal Efficiency of a Parabolic Trough Collector—A Review
,”
Appl. Energy
,
235
, pp.
1524
1540
.
16.
Sheikholeslami
,
M.
,
Said
,
Z.
, and
Jafaryar
,
M.
,
2022
, “
Hydrothermal Analysis for a Parabolic Solar Unit With Wavy Absorber Pipe and Nanofluid
,”
Renew. Energy
,
188
, pp.
922
932
.
17.
Ebrahim Ghasemi
,
S.
, and
Akbar Ranjbar
,
A.
,
2017
, “
Numerical Thermal Study on Effect of Porous Rings on Performance of Solar Parabolic Trough Collector
,”
Appl. Therm. Eng.
,
118
, pp.
807
816
.
18.
Saini
,
P.
,
Dhar
,
A.
, and
Powar
,
S.
,
2024
, “
Performance Evaluation of a Parabolic Trough Collector With a Uniform Helical Wire Coil Flow Insert
,”
Results Eng.
,
21
, p.
101794
.
19.
Osorio
,
J. D.
,
Sensoy
,
T.
,
Rivera-Alvarez
,
A.
,
Patiño-Jaramillo
,
G. A.
, and
Ordonez
,
J. C.
,
2023
, “
Influence of Correlations on the Thermal Performance Modeling of Parabolic Trough Collectors
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
61008
.
20.
Altwijri
,
F.
,
Sherif
,
S. A.
, and
Alshwairekh
,
A. M.
,
2023
, “
Parametric Investigation of a V-Shape Ribbed Absorber Tube in Parabolic Trough Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
145
(
4
), p.
041004
.
21.
Altwijri
,
F.
,
Sherif
,
S. A.
, and
Alshwairekh
,
A. M.
,
2023
, “
Effect of Different Arrangements of V-Shaped Ribs on the Performance of an Optically Enhanced Parabolic Trough Solar Collector
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031012
.
22.
Djenane
,
M. S.
,
Hadji
,
S.
,
Touhami
,
O.
, and
Zitouni
,
A. H.
,
2024
, “
A Novel Design of Parabolic Trough Solar Collector's Absorber Tube
,”
ASME J. Sol. Energy Eng.
,
146
(
3
), p.
031001
.
23.
Goel
,
A.
,
Mahadeva
,
R.
, and
Manik
,
G.
,
2023
, “
Analysis and Optimization of Parabolic Trough Solar Collector to Improve Its Optical Performance
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031009
.
24.
Salgado Conrado
,
L.
,
Rodriguez-Pulido
,
A.
, and
Calderón
,
G.
,
2017
, “
Thermal Performance of Parabolic Trough Solar Collectors
,”
Renew. Sustain. Energy Rev.
,
67
, pp.
1345
1359
.
25.
Sandeep
,
H. M.
, and
Arunachala
,
U. C.
,
2017
, “
Solar Parabolic Trough Collectors: A Review on Heat Transfer Augmentation Techniques
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
1218
1231
.
26.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2014
, “
Heat Transfer and Thermodynamic Performance of a Parabolic Trough Receiver With Centrally Placed Perforated Plate Inserts
,”
Appl. Energy
,
136
, pp.
989
1003
.
27.
Bellos
,
E.
,
Daniil
,
I.
, and
Tzivanidis
,
C.
,
2018
, “
Multiple Cylindrical Inserts for Parabolic Trough Solar Collector
,”
Appl. Therm. Eng.
,
143
, pp.
80
89
.
28.
Liu
,
P.
,
Zheng
,
N.
,
Liu
,
Z.
, and
Liu
,
W.
,
2019
, “
Thermal-Hydraulic Performance and Entropy Generation Analysis of a Parabolic Trough Receiver With Conical Strip Inserts
,”
Energy Convers. Manage.
,
179
, pp.
30
45
.
29.
Zhu
,
X.
,
Zhu
,
L.
, and
Zhao
,
J.
,
2017
, “
Wavy-Tape Insert Designed for Managing Highly Concentrated Solar Energy on Absorber Tube of Parabolic Trough Receiver
,”
Energy
,
141
, pp.
1146
1155
.
30.
Al-Oran
,
O.
, and
Lezsovits
,
F.
,
2020
, “
Recent Experimental Enhancement Techniques Applied in the Receiver Part of the Parabolic Trough Collector—A Review
,”
Int. Rev. Appl. Sci. Eng.
,
11
(
3
), pp.
209
219
.
31.
Saleh
,
E. M.
, and
Hameed
,
V. M.
,
2024
, “
Innovative New Solar Parabolic Trough Collector Enhanced by Corrugated Receiver Surface With PCM and Turbulator Inside
,”
J. Energy Storage
,
86
(
Part B
), p.
111403
.
32.
Vengadesan
,
E.
,
Ismail Rumaney
,
A. R.
,
Mitra
,
R.
,
Harichandan
,
S.
, and
Senthil
,
R.
,
2022
, “
Heat Transfer Enhancement of a Parabolic Trough Solar Collector Using a Semicircular Multitube Absorber
,”
Renew. Energy
,
196
, pp.
111
124
.
33.
Karaağaç
,
M. O.
,
Akıncı
,
B.
, and
Ergün
,
A.
,
2024
, “
Enhancing the Performance of Parabolic Trough Solar Collectors: Cost-Effective Innovative Designs for Sustainable Energy Harvesting
,”
Appl. Therm. Eng.
,
253
, p.
123693
.
34.
Kumaresan
,
G.
,
Sridhar
,
R.
, and
Velraj
,
R.
,
2012
, “
Performance Studies of a Solar Parabolic Trough Collector With a Thermal Energy Storage System
,”
Energy
,
47
(
1
), pp.
395
402
.
35.
Lüpfert
,
E.
,
Riffelmann
,
K. J.
,
Price
,
H.
,
Burkholder
,
F.
, and
Moss
,
T.
,
2008
, “
Experimental Analysis of Overall Thermal Properties of Parabolic Trough Receivers
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021007
.
36.
Zou
,
B.
,
Dong
,
J.
,
Yao
,
Y.
, and
Jiang
,
Y.
,
2016
, “
An Experimental Investigation on a Small-Sized Parabolic Trough Solar Collector for Water Heating in Cold Areas
,”
Appl. Energy
,
163
, pp.
396
407
.
37.
Kumar
,
D.
, and
Kumar
,
S.
,
2018
, “
Thermal Performance of the Solar Parabolic Trough Collector at Different Flow Rates: An Experimental Study
,”
Int. J. Ambient Energy
,
39
(
1
), pp.
93
102
.
38.
Wang
,
Q.
,
Yao
,
Y.
,
Shen
,
Z.
, and
Yang
,
H.
,
2023
, “
A Hybrid Parabolic Trough Solar Collector System Integrated With Photovoltaics
,”
Appl. Energy
,
329
, p.
120336
.
39.
Bagherzadeh
,
K.
,
Piroozmand
,
V.
, and
Ahmadi
,
R.
,
2024
, “
Cascading Latent Heat Thermal Energy Storage in Parabolic Trough Solar Collector as a Promising Solution: An Experimental Investigation
,”
Energy Convers. Manage.
,
300
, p.
117942
.
40.
Singh
,
S. K.
,
Tiwari
,
A. K.
, and
Paliwal
,
H. K.
,
2023
, “
Performance Augmentation Strategy of Parabolic Trough Collector by Employing MXene-Based Solar Absorbing Coating
,”
Process Saf. Environ. Prot.
,
174
, pp.
971
982
.
41.
Norouzi
,
A. M.
,
Siavashi
,
M.
,
Ahmadi
,
R.
, and
Tahmasbi
,
M.
,
2021
, “
Experimental Study of a Parabolic Trough Solar Collector With Rotating Absorber Tube
,”
Renew. Energy
,
168
, pp.
734
749
.
42.
Sridhar
,
K.
,
Lingaiah
,
G.
,
Vinod Kumar
,
G.
,
Anil Kumar
,
S.
, and
Ramakrishna
,
G.
,
2018
, “
Performance of Cylindrical Parabolic Collector With Automated Tracking System
,”
Appl. Sol. Energy
,
54
(
2
), pp.
134
138
.
43.
Bakos
,
G. C.
,
2006
, “
Design and Construction of a Two-Axis Sun Tracking System for Parabolic Trough Collector (PTC) Efficiency Improvement
,”
Renew. Energy
,
31
(
15
), pp.
2411
2421
.
44.
Niknia
,
I.
,
Yaghoubi
,
M.
, and
Hessami
,
R.
,
2012
, “
A Novel Experimental Method to Find Dust Deposition Effect on the Performance of Parabolic Trough Solar Collectors
,”
Int. J. Environ. Stud.
,
69
(
2
), pp.
233
252
.
45.
Sreenivasalu Reddy
,
N.
,
Gowreesh Subramanya
,
S.
,
Vishwanath
,
K. C.
,
Karthikeyan
,
M.
, and
Kanchiraya
,
S.
,
2022
, “
Enhancing the Thermal Efficiency of Parabolic Trough Collector Using Rotary Receiver Tube
,”
Sustain. Energy Technol. Assessm.
,
51
, p.
101941
.
46.
Nageh
,
M.
,
Abdullah
,
M. P.
, and
Yousef
,
B.
,
2021
, “
Energy Gain Between Automatic and Manual Solar Tracking Strategies in Large Scale Solar Photovoltaic System-12 Cities Comparison
,”
2021 IEEE International Conference in Power Engineering Application (ICPEA)
, pp.
121
126
.
47.
Sukhatme
,
S. P.
, and
Nayak
,
J. K.
,
2017
,
Solar Energy
,
McGraw-Hill Education
.
48.
Al-Rabeeah
,
A. Y.
,
Seres
,
I.
, and
Farkas
,
I.
,
2023
, “
Experimental Investigation of Improved Parabolic Trough Solar Collector Thermal Efficiency Using Novel Receiver Geometry Design
,”
Int. J. Thermofluids
,
18
, p.
100344
.
49.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
You do not currently have access to this content.