Abstract

Photovoltaic (PV) systems convert solar energy into electricity with about 20% efficiency, while the remaining 80% dissipates as heat, reducing performance. Maintaining PV cells near 25 °C is crucial to avoid efficiency losses. This study explores a novel passive cooling design, photovoltaic perforated wavy-shape fins (PV-PWSFs), using ansys fluent simulations under solar irradiance (400–1000 W/m2) and airflow speeds (0.5–2.5 m/s). The PV-PWSFs system significantly reduced average PV temperatures, cooling them to 57.8 °C at 1000 W/m2, compared to 64.5 °C for photovoltaic perforated straight-shape fins (PV-PSSFs) and 83.3 °C without fins. At higher airflow speeds, the system achieved even lower temperatures, reaching 47.7 °C at 2.5 m/s. This cooling enhanced PV efficiency to 12.79% and boosted power output by 15.6% at 1000 W/m2. The wavy fins increased heat dissipation by enlarging the surface area and promoting turbulent airflow for improved convective cooling. Perforations facilitated better airflow distribution, reducing hotspots and ensuring uniform panel temperatures. Additionally, the study also analyzed the effects of fin wavelength and amplitude on performance. A wavelength of 10 cm and an amplitude of 1.5 cm provided optimal cooling by balancing heat transfer enhancement and flow resistance. These findings demonstrate that the PV-PWSF design effectively reduces operating temperatures, enhancing both the performance and lifespan of PV systems.

References

1.
Kannan
,
N.
, and
Vakeesan
,
D.
,
2016
, “
Solar Energy for Future World:—A Review
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
1092
1105
.
2.
Gairaa
,
K.
, and
Bakelli
,
Y.
,
2013
, “
Solar Energy Potential Assessment in the Algerian South Area: Case of Ghardaïa Region
,”
J. Renew. Energy
,
2013
(
1
), p.
496348
.
3.
Reinders
,
A.
,
Verlinden
,
P. J.
,
Van Sark
,
W.
, and
Freundlich
,
A.
,
2017
,
Photovoltaic Solar Energy: From Fundamentals to Applications
, Vol.
1
, ed.,
John Wiley & Sons
,
Londen, UK
.
4.
Alqatamin
,
A.
, and
Su
,
J.
,
2025
, “
Experimental Investigation of the Photovoltaic Thermal Integrated With Ground Heat Exchanger Using Volcanic Tuff Stones
,”
Appl. Therm. Eng.
,
263
, p.
125357
.
5.
Ozgoren
,
M.
,
Aksoy
,
M. H.
,
Bakir
,
C.
, and
Dogan
,
S.
,
2013
, “
Experimental Performance Investigation of Photovoltaic/Thermal (PV-T) System
,”
EPJ Web Conf.
,
45
, p.
01106
.
6.
Chumpolrat
,
K.
,
Sangsuwan
,
V.
,
Udomdachanut
,
N.
,
Kittisontirak
,
S.
,
Songtrai
,
S.
,
Chinnavornrungsee
,
P.
,
Limmanee
,
A.
,
Sritharathikhun
,
J.
, and
Sriprapha
,
K.
,
2014
, “
Effect of Ambient Temperature on Performance of Grid-Connected Inverter Installed in Thailand
,”
Int. J. Photoenergy
,
2014
(
1
), p.
502628
.
7.
Alqatamin
,
A.
, and
Jinzhan
,
S.
,
2025
, “
Numerical Analysis and Design of Photovoltaic-Thermal (PVT) System With Novel Water-Cooling Channel Structure Integrated With Perforated V-Shape Fins
,”
Renew. Energy
,
243
, p.
122587
.
8.
Moharram
,
K. A.
,
Abd-Elhady
,
M. S.
,
Kandil
,
H. A.
, and
El-Sherif
,
H.
,
2013
, “
Enhancing the Performance of Photovoltaic Panels by Water Cooling
,”
Ain Shams Eng. J.
,
4
(
4
), pp.
869
877
.
9.
Kumar Laha
,
S.
,
Kumar Sadhu
,
P.
,
Ganguly
,
A.
, and
Kumar Naskar
,
A.
,
2022
, “
A Comparative Study on Thermal Performance of a 3-D Model Based Solar Photovoltaic Panel Through Finite Element Analysis
,”
Ain Shams Eng. J.
,
13
(
2
), p.
101533
.
10.
Alsaqoor
,
S.
,
Alqatamin
,
A.
,
Alahmer
,
A.
,
Nan
,
Z.
,
Al-Husban
,
Y.
, and
Jouhara
,
H.
,
2023
, “
The Impact of Phase Change Material on Photovoltaic Thermal (PVT) Systems: A Numerical Study
,”
Int. J. Thermofluids
,
18
, p.
100365
.
11.
Arifin
,
Z.
,
Suyitno
,
S.
,
Tjahjana
,
D. D.
,
Juwana
,
W. E.
,
Putra
,
M. R.
, and
Prabowo
,
A. R.
,
2020
, “
The Effect of Heat Sink Properties on Solar Cell Cooling Systems
,”
Appl. Sci.
,
10
(
21
), p.
7919
.
12.
Micheli
,
L.
,
Fernández
,
E. F.
,
Almonacid
,
F.
,
Mallick
,
T. K.
, and
Smestad
,
G. P.
,
2016
, “
Performance, Limits and Economic Perspectives for Passive Cooling of High Concentrator Photovoltaics
,”
Sol. Energy Mater. Sol. Cells
,
153
, pp.
164
178
.
13.
Haque
,
M. A.
,
Miah
,
M.
,
Hossain
,
S.
, and
Rahman
,
M.
,
2022
, “
Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011009
.
14.
Johnston
,
E.
,
Szabo
,
P. S. B.
, and
Bennett
,
N. S.
,
2021
, “
Cooling Silicon Photovoltaic Cells Using Finned Heat Sinks and the Effect of Inclination Angle
,”
Therm. Sci. Eng. Prog.
,
23
, p.
100902
.
15.
Hasan
,
I. A.
,
2018
, “
Enhancement the Performance of PV Panel by Using Fins as Heat Sink
,”
Eng. Technol. J.
,
36
(
7A
), pp.
798
805
.
16.
Kim
,
J.
,
Bae
,
S.
,
Yu
,
Y.
, and
Nam
,
Y.
,
2020
, “
Experimental and Numerical Study on the Cooling Performance of Fins and Metal Mesh Attached on a Photovoltaic Module
,”
Energies
,
13
(
1
), p.
85
.
17.
Ahmed
,
I.
,
Farhin
,
H. A.
,
Haque
,
M. A.
,
Miah
,
M. A. K.
,
Heme
,
S. A.
,
Rahman
,
M. H.
, and
Srirattayawong
,
S.
,
2025
, “
Numerical Study on Uniform Passive Cooling Configurations for Photovoltaic Modules in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
147
(
4
), p.
041003
.
18.
Popovici
,
C. G.
,
Hudişteanu
,
S. V.
,
Mateescu
,
T. D.
, and
Cherecheş
,
N.-C.
,
2016
, “
Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks
,”
Energy Procedia
,
85
, pp.
425
432
.
19.
Hachim
,
D. M.
,
Al-Manea
,
A.
,
Al-Rbaihat
,
R.
,
Abed
,
Q. A.
,
Sadiq
,
M.
,
Homod
,
R. Z.
, and
Alahmer
,
A.
,
2025
, “
Enhancing the Performance of Photovoltaic Solar Cells Using a Hybrid Cooling Technique of Thermoelectric Generator and Heat Sink
,”
ASME J. Sol. Energy Eng.
,
147
(
2
), p.
021011
.
20.
Zheng
,
N.
,
Liu
,
P.
,
Shan
,
F.
,
Liu
,
J.
,
Liu
,
Z.
, and
Liu
,
W.
,
2016
, “
Numerical Studies on Thermo-Hydraulic Characteristics of Laminar Flow in a Heat Exchanger Tube Fitted With Vortex Rods
,”
Int. J. Therm. Sci.
,
100
, pp.
448
456
.
21.
Al-abidi
,
A. A.
,
Bin Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammed
,
A. T.
,
2013
, “
CFD Applications for Latent Heat Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
353
363
.
22.
Nishioka
,
K.
,
Hatayama
,
T.
,
Uraoka
,
Y.
,
Fuyuki
,
T.
,
Hagihara
,
R.
, and
Watanabe
,
M.
,
2003
, “
Field-Test Analysis of PV System Output Characteristics Focusing on Module Temperature
,”
Sol. Energy Mater. Sol. Cells
,
75
(
3–4
), pp.
665
671
.
23.
Rahman
,
M. M.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2017
, “
Effects of Operational Conditions on the Energy Efficiency of Photovoltaic Modules Operating in Malaysia
,”
J. Cleaner Prod.
,
143
, pp.
912
924
.
24.
Fayaz
,
H.
,
Nasrin
,
R.
,
Rahim
,
N. A.
, and
Hasanuzzaman
,
M.
,
2018
, “
Energy and Exergy Analysis of the PVT System: Effect of Nanofluid Flow Rate
,”
Sol. Energy
,
169
, pp.
217
230
.
25.
Kazemian
,
A.
,
Salari
,
A.
,
Hakkaki-Fard
,
A.
, and
Ma
,
T.
,
2019
, “
Numerical Investigation and Parametric Analysis of a Photovoltaic Thermal System Integrated With Phase Change Material
,”
Appl. Energy
,
238
, pp.
734
746
.
26.
Makrides
,
G.
,
Zinsser
,
B.
,
Phinikarides
,
A.
,
Schubert
,
M.
, and
Georghiou
,
G. E.
,
2012
, “
Temperature and Thermal Annealing Effects on Different Photovoltaic Technologies
,”
Renew. Energy
,
43
, pp.
407
417
.
27.
Fayaz
,
H.
,
Rahim
,
N. A.
,
Hasanuzzaman
,
M.
,
Rivai
,
A.
, and
Nasrin
,
R.
,
2019
, “
Numerical and Outdoor Real Time Experimental Investigation of Performance of PCM Based PVT System
,”
Sol. Energy
,
179
, pp.
135
150
.
28.
Nasrin
,
R.
,
Rahim
,
N. A.
,
Fayaz
,
H.
, and
Hasanuzzaman
,
M.
,
2018
, “
Water/MWCNT Nanofluid Based Cooling System of PVT: Experimental and Numerical Research
,”
Renew. Energy
,
121
, pp.
286
300
.
29.
Su
,
D.
,
Jia
,
Y.
,
Lin
,
Y.
, and
Fang
,
G.
,
2017
, “
Maximizing the Energy Output of a Photovoltaic–Thermal Solar Collector Incorporating Phase Change Materials
,”
Energy Build.
,
153
, pp.
382
391
.
30.
Swinbank
,
W. C.
,
1963
, “
Long-Wave Radiation From Clear Skies
,”
Q. J. R. Metereol. Soc.
,
89
(
381
), pp.
339
348
.
31.
Maadi
,
S. R.
,
Kolahan
,
A.
,
Passandideh-Fard
,
M.
,
Sardarabadi
,
M.
, and
Moloudi
,
R.
,
2017
, “
Characterization of PVT Systems Equipped With Nanofluids-Based Collector From Entropy Generation
,”
Energy Convers. Manage.
,
150
, pp.
515
531
.
32.
Arifin
,
Z.
,
Tjahjana
,
D. D. D. P.
,
Hadi
,
S.
,
Rachmanto
,
R. A.
,
Setyohandoko
,
G.
, and
Sutanto
,
B.
,
2020
, “
Numerical and Experimental Investigation of Air Cooling for Photovoltaic Panels Using Aluminum Heat Sinks
,”
Int. J. Photoenergy
,
2020
(
1
), p.
1574274
.
33.
Kacinski
,
R.
,
Strasser
,
W.
,
Leonard
,
S.
,
Prichard
,
R.
, and
Truxel
,
B.
,
2023
, “
Validation of a Human Upper Airway Computational Fluid Dynamics Model for Turbulent Mixing
,”
ASME J. Fluids Eng.
,
145
(
12
), p.
121203
.
You do not currently have access to this content.