Abstract

This investigation reports a detailed computational study of heat transfer and airflow in an office with seated persons with a double-duct vertical roof solar chimney (SC). The computational model was validated with experimental temperature profiles. The validated computational model was used to analyze the effect of the heating of the SC and one vertical wall of the room on temperature fields, flow patterns, and the draught rate (DR) (discomfort index) in the thermal system. According to the Standard 62.1 of the American National Standards Institute (ANSI) and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the present arrangement is adequate for the ventilation of offices. According to DR values, in offices with seated persons, the use of solar chimneys offers a natural and comfortable ventilation alternative, causing the removal and exchange of air, thereby improving the entry of air without compromising comfort conditions.

References

1.
IEA
,
2021
,
Key World Energy Statistics 2021
,
OECD Publishing
,
Paris
, pp.
34
43
.
2.
Shahrestani
,
M.
,
Yao
,
R.
,
Cook
,
G. K.
, and
Clements-Croome
,
D.
,
2018
, “
Decision-Making on HVAC&R Systems Selection: A Critical Review
,”
Intell. Build. Int.
,
10
(
3
), pp.
133
153
.
3.
Awbi
,
H. B.
,
2003
,
Ventilation of Buildings
, 2nd ed.,
Routledge
,
London
, pp.
48
93
.
4.
Safari
,
M.
, and
Torabi
,
F.
,
2014
, “
Improvement of Thermal Performance of a Solar Chimney Based on a Passive Solar Heating System With Phase-Change Materials
,”
Energy Equip. Syst.
,
2
(
2
), pp.
141
154
.
5.
Khanal
,
R.
, and
Lei
,
C.
,
2014
, “
An Experimental Investigation of an Inclined Passive Wall Solar Chimney for Natural Ventilation
,”
Sol. Energy
,
107
, pp.
461
474
.
6.
Park
,
D.
, and
Battaglia
,
F.
,
2015
, “
Application of a Wall-Solar Chimney for Passive Ventilation of Dwellings
,”
ASME J. Sol. Energy Eng.
,
137
(
6
), p.
061006
.
7.
Sudprasert
,
S.
,
Chinsorranant
,
C.
, and
Rattanadecho
,
P.
,
2016
, “
Numerical Study of Vertical Solar Chimneys With Moist Air in a Hot and Humid Climate
,”
Int. J. Heat Mass Transf.
,
102
, pp.
645
656
.
8.
Hemmer
,
C.
,
Popa
,
C. V.
,
Sergent
,
A.
, and
Polidori
,
G.
,
2016
, “
Heat and Fluid Flow in an Uneven Heated Chimney
,”
Int. J. Therm. Sci.
,
107
, pp.
220
229
.
9.
Shi
,
L.
, and
Zhang
,
G.
,
2016
, “
An Empirical Model to Predict the Performance of Typical Solar Chimneys Considering Both Room and Cavity Configurations
,”
Build. Environ.
,
103
, pp.
250
261
.
10.
Mokheimer
,
E. M. A.
,
Shakeel
,
M. R.
, and
Al-Sadah
,
J.
,
2017
, “
A Novel Design of Solar Chimney for Cooling Load Reduction and Other Applications in Buildings
,”
Energy Build.
,
153
, pp.
219
230
.
11.
Park
,
D.
, and
Battaglia
,
F.
,
2017
, “
Development of a Predictive Equation for Ventilation in a Wall-Solar Chimney System
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031001
.
12.
Cheng
,
X.
,
Shi
,
L.
,
Dai
,
P.
,
Zhang
,
G.
,
Yang
,
H.
, and
Li
,
J.
,
2018
, “
Study on Optimizing Design of Solar Chimney for Natural Ventilation and Smoke Exhaustion
,”
Energy Build.
,
170
, pp.
145
156
.
13.
Shi
,
L.
,
2018
, “
Theoretical Models for Wall Solar Chimney Under Cooling and Heating Modes Considering Room Configuration
,”
Energy
,
165
(
Pt B
), pp.
925
938
.
14.
Duan
,
S.
,
2019
, “
A Predictive Model for Airflow in a Typical Solar Chimney Based on Solar Radiation
,”
J. Build. Eng.
,
26
, p.
100916
.
15.
Hou
,
Y.
,
Li
,
H.
, and
Li
,
A.
,
2019
, “
Experimental and Theoretical Study of Solar Chimneys in Buildings With Uniform Wall Heat Flux
,”
Sol. Energy
,
193
, pp.
244
252
.
16.
Shi
,
L.
,
Cheng
,
X.
,
Zhang
,
L.
,
Li
,
Z.
,
Zhang
,
G.
,
Huang
,
D.
, and
Tu
,
J.
,
2019
, “
Interaction Effect of Room Opening and Air Inlet on Solar Chimney Performance
,”
Appl. Therm. Eng.
,
159
, p.
113877
.
17.
Wang
,
Q.
,
Zhang
,
G.
,
Li
,
W.
, and
Shi
,
L.
,
2020
, “
External Wind on the Optimum Designing Parameters of a Wall Solar Chimney in Building
,”
Sustain. Energy Technol. Assess.
,
42
, p.
100842
.
18.
Dhahri
,
M.
,
Nekoonam
,
S.
,
Hana
,
A.
,
Assad
,
M. E. H.
,
Arıcı
,
M.
,
Sharifpur
,
M.
, and
Sammouda
,
H.
,
2021
, “
Thermal Performance Modeling of Modified Absorber Wall of Solar Chimney-Shaped Channels System for Building Ventilation
,”
J. Therm. Anal. Calorim.
,
145
, pp.
1137
1149
.
19.
Sornek
,
K.
,
Figaj
,
R.
, and
Papis-Frączek
,
K.
,
2025
, “
Development and Tests of the Novel Configuration of the Solar Chimney With Sensible Heat Storage
,”
Appl. Therm. Eng.
,
258
(
Pt A
), p.
124515
.
20.
Huh
,
J.
,
Ahn
,
C. S.
,
Bang
,
B. H.
,
Aldalbahi
,
A.
,
Rahaman
,
M.
,
Yarin
,
A. L.
, and
Yoon
,
S. S.
,
2024
, “
Enhancing the Buoyancy of Air Flows Inside Vertical Solar Chimneys Using a G/CNT/AgNW-Coated Heat Collector
,”
Int. Commun. Heat Mass Transf.
,
156
, p.
107675
.
21.
Peng
,
P.
, and
Wang
,
H.
,
2024
, “
Solar Chimney Design in Rural Areas of Anhui, China: CFD Simulation, Energy and Carbon Footprint Assessment
,”
J. Build. Eng.
,
96
, p.
110590
.
22.
Gong
,
J.
,
Chew
,
L. W.
, and
Lee
,
P. S.
,
2024
, “
Theoretical Model for High-Rise Solar Chimneys and Optimum Shape for Uniform Flowrate Distribution
,”
Energy
,
298
, p.
131358
.
23.
Wang
,
J.
,
Guo
,
J.
,
Liu
,
C.
,
Li
,
Y.
, and
Li
,
C.
,
2024
, “
Experimental Investigation and Mathematical Modelling of the Heat and Mass Transfer Processes in a Solar Chimney
,”
J. Renew. Energy
,
237
, p.
121540
.
24.
Al-Kayiem
,
H. H.
,
Sreejaya
,
K. V.
, and
Gilani
,
S. I. U. H.
,
2014
, “
Mathematical Analysis of the Influence of the Chimney Height and Collector Area on the Performance of a Roof Top Solar Chimney
,”
Energy Build.
,
68
(
Pt A
), pp.
305
311
.
25.
Duan
,
S.
,
Jing
,
C.
, and
Long
,
E.
,
2015
, “
Transient Flows in Displacement Ventilation Enhanced by Solar Chimney and Fan
,”
Energy Build.
,
103
, pp.
124
130
.
26.
Zavala-Guillén
,
I.
,
Xamán
,
J.
,
Álvarez
,
G.
,
Arce
,
J.
,
Hernández-Pérez
,
I.
, and
Gijón-Rivera
,
M.
,
2016
, “
Computational Fluid Dynamics for Modeling the Turbulent Natural Convection in a Double Air-Channel Solar Chimney System
,”
Int. J. Mod. Phys. C
,
27
(
8
), p.
1650095
.
27.
Lechowska
,
A.
,
Szczepanik-Ścisło
,
N.
,
Schnotale
,
J.
,
Stelmach
,
M.
, and
Pyszczek
,
T.
,
2018
, “
CFD Modelling of Transient Thermal Performance of Solar Chimney Used for Passive Ventilation in a Building
,”
IOP Conference Series: Materials Science and Engineering
,
Krakow, Poland
, Sept. 11–13, Vol. 415, p.
012049
.
28.
Zavala-Guillén
,
I.
,
Xamán
,
J.
,
Hernández-Pérez
,
I.
,
Hernández-Lopéz
,
I.
,
Gijón-Rivera
,
M.
, and
Chávez
,
Y.
,
2018
, “
Numerical Study of the Optimum Width of a Diurnal Double Air-Channel Solar Chimney
,”
Energy
,
147
(
3
), pp.
403
417
.
29.
Nguyen
,
Y. Q.
, and
Wells
,
J. C.
,
2020
, “
A Numerical Study on Induced Flowrate and Thermal Efficiency of a Solar Chimney With Horizontal Absorber Surface for Ventilation of Buildings
,”
J. Build. Eng.
,
28
, p.
101050
.
30.
Salehi
,
A.
,
Asadi
,
S.
,
Constanzo
,
V.
,
Fayaz
,
R.
,
Bozorgi
,
M.
,
Imani
,
N.
, and
Nocera
,
F.
,
2019
, “
Investigation of Thermal Comfort Efficacy of Solar Chimneys Under Different Climates and Operation Time Periods
,”
Energy Build.
,
205
, p.
109528
.
31.
Abdeen
,
A.
,
Serageldin
,
A. A.
,
Ibrahim
,
M. G. E.
,
El-Zafarany
,
A.
,
Ookawara
,
S.
, and
Murata
,
R.
,
2019
, “
Solar Chimney Optimization for Enhancing Thermal Comfort in Egypt: An Experimental and Numerical Study
,”
Sol. Energy
,
180
, pp.
524
536
.
32.
Xaman
,
J.
,
Vargas-Lopez
,
R.
,
Gijon-Rivera
,
M.
,
Zavala-Guillen
,
I.
,
Jimenez
,
M. J.
, and
Arce
,
J.
,
2019
, “
Transient Thermal Analysis of a Solar Chimney for Buildings With Three Different Types of Absorbing Materials: Copper Plate/PCM/Concrete Wall
,”
Renew. Energy
,
136
, pp.
139
158
.
33.
Khosravi
,
M.
,
Fazelpour
,
F.
, and
Rosen
,
M. A.
,
2019
, “
Improved Application of a Solar Chimney Concept in a Two-Story Building: An Enhanced Geometry Through a Numerical Approach
,”
Renew. Energy
,
143
, pp.
569
585
.
34.
Kong
,
J.
,
Liu
,
J.
, and
Lei
,
C.
,
2020
, “
A CFD Based Approach for Determining the Optimum Inclination Angle of a Roof-Top Solar Chimney for Building Ventilation
,”
Sol. Energy
,
198
, pp.
555
569
.
35.
Jimenez-Xaman
,
C.
,
Xaman
,
J.
,
Gijon-Rivera
,
M.
,
Zavala-Guillen
,
I.
,
Noh-Pat
,
F.
, and
Simá
,
E.
,
2020
, “
Assessing the Thermal Performance of a Rooftop Solar Chimney Attached to a Single Room
,”
J. Build. Eng.
,
31
, p.
101380
.
36.
Vazquez-Ruiz
,
A.
,
Navarro
,
J. M. A.
,
Hinojosa
,
J. F.
, and
Xamán
,
J. P.
,
2021
, “
Effect of the Solar Roof Chimney Position on Heat Transfer in a Room
,”
Int. J. Mech. Sci.
,
209
, p.
106700
.
37.
Vazquez-Ruiz
,
A.
,
Navarro
,
J. M. A.
,
Hinojosa
,
J. F.
, and
Xaman
,
J. P.
,
2022
, “
Computational Fluid Dynamics and Experimental Analysis of the Heat Transfer in a Room With a Roof Solar Chimney
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041001
.
38.
Navarro
,
J. M. A.
,
Vazquez-Ruiz
,
A.
,
Hinojosa
,
J. F.
,
Moreno
,
S.
, and
Maytorena
,
V. M.
,
2024
, “
Transient Thermal Analysis of a Double Duct Solar Roof Chimney Coupled With a Scaled Room
,”
ASME J. Sol. Energy Eng.
,
146
(
1
), p.
011008
.
39.
Qasim
,
H. H.
,
Alshara
,
A. K.
, and
Abood
,
F. A.
,
2024
, “
Simulation and Design of a Solar Chimney Integrated With Phase Change Material Layer for Building Ventilation
,”
Int. J. Thermofluids
,
24
, p.
100853
.
40.
Chodury
,
D.
,
1993
, “
Introduction to the Renormalization Group Method and Turbulence Modelling
,” Fluent Report No. TM-107, Fluent Inc., Lebanon, NH.
41.
Nielsen
,
P.
,
1990
,
Specification of a Two-Dimensional Test Case
,
Institut for Bygningsteknik, Aalborg Universitet
,
Aalborg
, pp.
1
15
, https://vbn.aau.dk/files/197503356/Specification_of_a_TwoDimensional_Test_Case.pdf
42.
Fanger
,
P. O.
,
Melikov
,
A. K.
,
Hanzawa
,
H.
, and
Ring
,
J.
,
1988
, “
Air Turbulence and Sensation of Draught
,”
Energy Build.
,
12
(
1
), pp.
21
39
.
43.
ISO
,
2005
, “ISO 7730. Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria,”
ISO
,
Geneva, Switzerland
.
44.
Koskela
,
H.
,
Heikkinen
,
J.
,
Niemelä
,
R.
, and
Hautalampi
,
T.
,
2001
, “
Turbulence Correction for Thermal Comfort Calculation
,”
Build. Environ.
,
36
(
2
), pp.
247
255
.
45.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transf.
,
7
(
2
), pp.
147
163
.
46.
Van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
47.
ANSI/ASHRAE, Standard 62.1
,
2022
,
Ventilation for Acceptable Indoor Air Quality
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
,
Atlanta, GA
, https://www.techstreet.com/ashrae/standards/ashrae-62-1-2022?product_id=2501063
You do not currently have access to this content.