Abstract

A roughened solar air heater is developed numerically and experimentally with a novel roughness in the absorber. The roughness incorporated is a combination of rectangular and semi-circular ribs. The analysis is done to improve the thermal characteristics considering two cases. Type A with ribs placed above the absorber and Type B with ribs placed below it. Several operating parameters are investigated including heat flux, Reynolds number (Re), relative obstacle relative height (h/H) ranging from 400 W/m2 to 1000 W/m2, 4000 to 10,000, and 0.4 to 1.0, respectively. The relative pitch is kept constant at 15 mm. The governing equations are simulated employing the renormalization group k–ε turbulence flow model. The results indicated that both Type A and Type B achieved significant improvements over the smooth duct. Type A exhibited a maximum Nusselt number of 4.24, while Type B achieved 3.93 in comparison with smooth duct at Re of 10,000, respectively. The thermal enhancement factor (TEF) ranges from 1.32 to 1.79 for Type A and 1.26 to 1.69 for Type B at a heat flux intensity of 1000 W/m2. Also at a relative height of 1.0, Type A demonstrated the highest TEF of 1.79 at Re = 10,000 and provided a maximum exergy efficiency of 11.2%.

References

1.
Rashidi
,
S.
,
Kashefi
,
M. H.
, and
Hormozi
,
F.
,
2018
, “
Potential Applications of Inserts in Solar Thermal Energy Systems-A Review to Identify the Gaps and Frontier Challenges
,”
Sol. Energy
,
171
, pp.
929
952
.
2.
Das
,
B.
,
Mondol
,
J. D.
,
Debnath
,
S.
,
Pugsley
,
A.
,
Symth
,
M.
, and
Zacharopoulus
,
A.
,
2020
, “
Effect of the Absorber Surface Roughness on the Performance of a Solar Air Collector: An Experimental Investigation
,”
Renew. Energy
,
152
, pp.
567
578
.
3.
Reddy
,
J.
,
Roy
,
S.
,
Das
,
B.
, and
Jagadish
,
2021
, “
Performance Evaluation of Sand Coated Absorber Based Solar Air Collector
,”
J. Build. Eng.
,
44
, p.
102973
.
4.
Jha
,
P.
,
Mondol
,
J. D.
,
Das
,
B.
, and
Gupta
,
R.
,
2020
, “
Energy Metrics Assessment of a Photovoltaic Thermal Air Collector (PVTAC): A Comparison Between Flat and Wavy Collector
,”
Energy Sour., Part A Recov. Utiliz. Environ. Eff.
, pp.
1
19
.
5.
Reddy
,
J.
,
Das
,
B., Jagadish
, and
Negi
,
S.
,
2021
, “
Energy, Exergy, and Environmental (3E) Analyses of Reverse and Cross-Corrugated Trapezoidal Solar Air Collectors: An Experimental Study
,”
J. Build. Eng.
,
41
, p.
102434
.
6.
Mishra
,
R.
,
Singh
,
J.
,
Jain
,
S. K.
,
Faujdar
,
S.
,
Agrawal
,
M.
,
Mishra
,
A.
, and
Goyal
,
P. K.
,
2020
, “
Prediction of Behavior of Triangular Solar Air Heater Duct Using V-Down Rib With Multiple Gaps and Turbulence Promoters as Artificial Roughness: A CFD Analysis
,”
Int. J. Heat Mass Transfer
,
162
, p.
120376
.
7.
Das
,
B.
, and
Giri
,
A.
,
2015
, “
Mixed Convective Heat Transfer From Vertical Fin Array in the Presence of Vortex Generator
,”
Int. J. Heat Mass Transfer
,
82
, pp.
26
41
.
8.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2021
, “
Thermo-Hydraulic Performance Analysis of a Solar Air Heater (SAH) With Quarter-Circular Ribs on the Absorber Plate: A Comparative Study
,”
Int. J. Therm. Sci.
,
161
, p.
106747
.
9.
Poongavanam
,
G. K.
,
Panchabikesan
,
K.
,
Leo
,
A. J. D.
, and
Ramalingam
,
V.
,
2018
, “
Experimental Investigation on Heat Transfer Augmentation of Solar Air Heater Using Shot Blasted V-Corrugated Absorber Plate
,”
Renew. Energy
,
127
, pp.
213
229
.
10.
Jaurker
,
A. R.
,
Saini
,
J. S.
, and
Gandhi
,
B. K.
,
2006
, “
Heat Transfer and Friction Characteristics of Rectangular Solar Air Heater Duct Using Rib-Grooved Artificial Roughness
,”
Sol. Energy
,
80
(
8
), pp.
895
907
.
11.
Kumar
,
V.
, and
Murmu
,
R.
,
2021
, “
Experimental Investigation for Thermal Performance of Inclined Spherical Ball Roughened Solar Air Duct
,”
Renew. Energy
,
172
, pp.
1365
1392
.
12.
Manjunath
,
M. S.
,
Vasudeva Karanth
,
K.
, and
Yagnesh Sharma
,
N.
,
2019
, “
Numerical Analysis of Flat Plate Solar Air Heater Integrated With an Array of Pin Fins on Absorber Plate for Enhancement in Thermal Performance
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051008
.
13.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A Numerical Investigation of Square Sectioned Transverse Rib Roughened Solar Air Heater
,”
Int. J. Therm. Sci.
,
79
, pp.
111
131
.
14.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
A Review of CFD Methodology Used in Literature for Predicting Thermo-Hydraulic Performance of a Roughened Solar Air Heater
,”
Renew. Sustain. Energy Rev.
,
54
, pp.
550
605
.
15.
Singh
,
A.
, and
Singh
,
S.
,
2017
, “
CFD Investigation on Roughness Pitch Variation in Non-Uniform Cross-Section Transverse Rib Roughness on Nusselt Number and Friction Factor Characteristics of Solar Air Heater Duct
,”
Energy
,
128
, pp.
109
127
.
16.
Thakur
,
D. S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2017
, “
Performance Evaluation of Solar Air Heater With Novel Hyperbolic Rib Geometry
,”
Renew. Energy
,
105
, pp.
786
797
.
17.
Singh
,
I.
,
Vardhan
,
S.
,
Singh
,
S.
, and
Singh
,
A.
,
2019
, “
Experimental and CFD Analysis of Solar Air Heater Duct Roughened With Multiple Broken Transverse Ribs: A Comparative Study
,”
Sol. Energy
,
188
, pp.
519
532
.
18.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2018
, “
Investigation of Heat Transfer Augmentation and Friction Factor in Triangular Duct Solar Air Heater Due to Forward Facing Chamfered Rectangular Ribs: A CFD Based Analysis
,”
Renew. Energy
,
115
, pp.
824
835
.
19.
Priyam
,
A.
, and
Chand
,
P.
,
2016
, “
Thermal and Thermohydraulic Performance of Wavy Finned Absorber Solar Air Heater
,”
Sol. Energy
,
130
, pp.
250
259
.
20.
Das
,
S.
,
Biswas
,
A.
, and
Das
,
B.
,
2023
, “
Parametric Investigation on the Thermo-Hydraulic Performance of a Novel Solar Air Heater Design With Conical Protruded Nozzle Jet Impingement
,”
Appl. Therm. Eng.
,
219
(
Part B
), p.
119583
.
21.
Gogada
,
S.
,
Roy
,
S.
,
Gupta
,
A.
,
Das
,
B.
, and
Ehyaei
,
M. A.
,
2023
, “
Energy and Exergy Analysis of Solar Air Heater With Trapezoidal Ribs Based Absorber: A Comparative Analysis
,”
Energy Sci. Eng.
,
11
(
2
), pp.
585
605
.
22.
Das
,
S.
,
Biswas
,
A.
, and
Das
,
B.
,
2022
, “
Numerical Analysis of a Solar Air Heater With Jet Impingement—Comparison of Performance Between Jet Designs
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011001
.
23.
Katoch
,
H.
,
Rathore
,
S. K.
, and
Mund
,
C.
,
2023
, “
Heat Transfer and Entropy Generation Analysis of a Curved Solar Air Heater With a Sinusoidal Absorber Plate
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
051005
.
24.
Singh
,
V. P.
,
Jain
,
S.
, and
Gupta
,
J. M. L.
,
2022
, “
Analysis of the Effect of Variation in Open Area Ratio in Perforated Multi-V Rib Roughened Single Pass Solar Air Heater—Part A
,”
Energy Sour., Part A Recov. Utiliz. Environ. Eff.
, pp.
1
21
.
25.
Haldar
,
A.
,
Varshney
,
L.
, and
Verma
,
P.
,
2022
, “
Effect of Roughness Parameters on Performance of Solar Air Heater Having Artificial Wavy Roughness Using CFD
,”
Renew. Energy
,
184
, pp.
266
279
.
26.
Agrawal
,
Y.
,
Bhagoria
,
J. L.
,
Gautam
,
A.
,
Chaurasiya
,
P. K.
,
Dhanraj
,
J. A.
,
Solomon
,
J. M.
, and
Salyan
,
S.
,
2022
, “
Experimental Evaluation of Hydrothermal Performance of Solar Air Heater With Discrete Roughened Plate
,”
Appl. Therm. Eng.
,
211
, p.
118379
.
27.
Kalpana, Varshney
,
L.
, and
Subudhi
,
S.
,
2022
, “
Heat Transfer and Pressure Drop in a Double-Pass Solar Air Heater With Arc-Shaped Artificial Roughness
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061002
.
28.
Panda
,
S.
, and
Kumar
,
R.
,
2022
, “
Flow Friction and Thermal Performance of Dimple Imprinted Based Solar Air-Heater: A Numerical Study
,”
Numer. Heat Transfer, Part A Appl.
,
84
(
1
), pp.
35
53
.
29.
Shakya
,
S. K.
,
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2023
, “
Computational Fluid Dynamics Study of Thermo-Fluid Characteristics of Solar Air Heater Duct Using W-Shaped Rib Roughened Collector Plate
,”
ASME J. Heat Transfer-Trans. ASME
,
145
(
2
), p.
022901
.
30.
Mund
,
C.
,
Rathore
,
S. K.
, and
Sahoo
,
R. K.
,
2023
, “
Experimental Analysis of Thermal Performance of SAH With Impinging Jet Having Varying Length of Perforated Jet Plate
,”
Int. Commun. Heat Mass Transfer
,
145
(
Part A
), p.
106809
.
31.
Arunkumar
,
H. S.
,
Kumar
,
S.
, and
Vasudeva Karanth
,
K.
,
2022
, “
Performance Enhancement of a Solar Air Heater Using Rectangular Perforated Duct Inserts
,”
Therm. Sci. Eng. Prog.
,
34
, p.
101404
.
32.
Nidhul
,
K.
,
Yadav
,
A. K.
,
Anish
,
S.
, and
Arunachala
,
U. C.
,
2022
, “
Thermo-Hydraulic and Exergetic Performance of a Cost-Effective Solar Air Heater: CFD and Experimental Study
,”
Renew. Energy
,
184
, pp.
627
641
.
33.
Amara
,
W. B.
,
Bouabidi
,
A.
, and
Chrigui
,
M.
,
2024
, “
Thermal Performance Improvement of a Spiral Channel Solar Air Heater: Numerical and Experimental Investigation in the Desert Climate of Gabes Region
,”
ASME J. Sol. Energy Eng.
,
146
(
3
), p.
031007
.
34.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2024
, “
Thermo-Hydraulic Characteristics Evaluation of a Triangular Solar Air Heater Duct Having Transverse Ribs With Gaps: An Experimental Study
,”
ASME J. Sol. Energy Eng.
,
146
(
4
), p.
041001
.
35.
Shankar
,
R.
,
Kumar
,
R. K.
,
Pandey
,
A. K.
, and
Thakur
,
D. S.
,
2024
, “
Experimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs
,”
ASME J. Sol. Energy Eng.
,
146
(
3
), p.
031005
.
36.
ASHRAE Standard 93-2010
,
2014
,
Methods of Testing to Determine the Thermal Performance of Solar Collectors
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
Atlanta, GA
.
37.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renew. Energy
,
31
(
3
), pp.
317
331
.
38.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 9th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.
40.
Moghadasi
,
M.
,
Ghadamian
,
H.
,
Khosiani
,
M.
, and
Pourbafrani
,
M.
,
2022
, “
A Comprehensive Experimental Investigation and Dynamic Energy Modeling of a Highly Efficient Solar Air Heater With Octagonal Geometry
,”
Sol. Energy
,
242
, pp.
298
311
.
41.
Yousef
,
M. S.
,
Hassan
,
H.
, and
Sekiguchi
,
H.
,
2019
, “
Energy, Exergy, Economic and Enviroeconomic (4E) Analyses of Solar Distillation System Using Different Absorbing Materials
,”
Appl. Therm. Eng.
,
150
, pp.
30
41
.
42.
Nidhul
,
K.
,
Kumar
,
S.
,
Yadav
,
A. K.
, and
Anish
,
S.
,
2020
, “
Enhanced Thermo-Hydraulic Performance in a V-Ribbed Triangular Duct Solar Air Heater: CFD and Exergy Analysis
,”
Energy
,
200
, p.
117448
.
43.
Singh
,
S.
,
2018
, “
Thermal Performance Analysis of Semicircular and Triangular Cross-Sectioned Duct Solar Air Heaters Under External Recycle
,”
J. Energy Storage
,
20
, pp.
316
336
.
44.
Sharma
,
S.
,
Das
,
R. K.
, and
Kulkarni
,
K.
,
2021
, “
Computational and Experimental Assessment of Solar Air Heater Roughened With Six Different Baffles
,”
Case Stud. Therm. Eng.
,
27
, p.
101350
.
You do not currently have access to this content.