Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A system combining the ventilated concrete floor (VCF) with solar air collector (SAC) in buildings has been applied in the western Sichuan Plateau for nighttime heating. However, the dynamic model coupled with uneven solar radiation of SAC-VCF is absent, thus the thermal behavior of the system is difficult to predict in practice. In this research, a coupled model is built to predict the thermal characteristics of the room with the SAC-VCF system under uneven solar radiation. The calculation model of VCF considers the uneven distribution of solar radiation on the floor surface, established by combining the resistance–capacitance (RC) network model and the number of transfer unit (NTU) model using the discrete method and validated by experimental data. A 3R2C model is utilized to model envelopes, validated by simulation results. The calculation error of surface temperature and room air temperature is within 5%. Then a case study is conducted with the validated model to predict the thermal performance of the SAC-VCF system with even and uneven solar radiation. Results indicate that under uneven solar radiation, the local surface temperature significantly increases to 35.1 °C, 9.1 °C higher than even solar radiation. Meanwhile, under uneven solar radiation, the heat transfer of supply air and surface of VCF is increased by 14% and 6%, respectively. Besides, the room air temperature is almost equal of two cases, while the operative temperature is 0.4 °C lower under uneven solar radiation. The model is beneficial to further study the influencing factors of this system.

References

1.
China Building Energy Conservation Association and Institute of Urban–Rural Construction and Development, Chongqing University
,
2024
, “
China Building Energy Consumption Annual Report 2023
,”
Constr. Archit.
, (
2
), pp.
46
59
.
2.
Ministry of Housing and Urban–Rural Development of China
,
2022
, “14th Five-Year Plan Building Energy Conservation and Green Building Development Plan,” https://www.gov.cn/xinwen/2022-03/17/content_5679461.htm
3.
Luo
,
X.
,
Yu
,
T.
, and
Lei
,
B.
,
2023
, “
Experimental Investigation on the Heat Transfer Performance of Ventilated Floor With the Influence of Solar Radiation
,”
Appl. Therm. Eng.
,
229
, p.
120551
.
4.
Forson
,
F. K.
,
Nazha
,
M. A. A.
, and
Rajakaruna
,
H.
,
2003
, “
Experimental and Simulation Studies on a Single Pass, Double Duct Solar Air Heater
,”
Energy Convers. Manage.
,
44
(
8
), pp.
1209
1227
.
5.
Álvarez
,
B.
,
Arce
,
J.
, and
Colorado
,
D.
,
2024
, “
Transient Study (Annual) of the Heat Transfer of a Two-Channel Solar Air Collector
,”
ASME J. Sol. Energy Eng.
,
146
(
1
), p.
011005
.
6.
Kumar
,
S.
,
Kumar
,
A.
, and
Yadav
,
A.
,
2015
, “
Experimental Analysis of Thermal Performance of Evacuated Tube and Flat-Plate Solar Air Collectors at Different Air Flow Rates
,”
Int. J. Sustain. Eng.
,
8
(
4–5
), pp.
280
293
.
7.
Arunkumar
,
H. S.
,
Vasudeva Karanth
,
K.
, and
Kumar
,
S.
,
2020
, “
Review on the Design Modifications of a Solar Air Heater for Improvement in the Thermal Performance
,”
Sustain. Energy Technol. Assess.
,
39
(
4
), p.
100685
.
8.
Dimoudi
,
A.
,
Androutsopoulos
,
A.
, and
Lykoudis
,
S.
,
2006
, “
Summer Performance of a Ventilated Roof Component
,”
Energy Build.
,
38
(
6
), pp.
610
617
.
9.
Leccese
,
F.
,
Salvadori
,
G.
, and
Barlit
,
M.
,
2019
, “
Ventilated Flat Roofs: A Simplified Model to Assess Their Hygrothermal Behaviour
,”
J. Build. Eng.
,
22
, pp.
12
21
.
10.
Lima-Téllez
,
T.
,
Chávez
,
Y.
,
Hernández-López
,
I.
,
Xamán
,
J.
, and
Hernández-Pérez
,
I.
,
2022
, “
Annual Thermal Evaluation of a Ventilated Roof Under Warm Weather Conditions of Mexico
,”
Energy
,
246
, p.
123412
.
11.
Stazi
,
F.
,
Mastrucci
,
A.
, and
di Perna
,
C.
,
2012
, “
The Behaviour of Solar Walls in Residential Buildings With Different Insulation Levels: An Experimental and Numerical Study
,”
Energy Build.
,
47
, pp.
217
229
.
12.
Liu
,
Z.
,
Zhang
,
L.
,
Gong
,
G.
,
Luo
,
Y.
, and
Meng
,
F.
,
2015
, “
Evaluation of a Prototype Active Solar Thermoelectric Radiant Wall System in Winter Conditions
,”
Appl. Therm. Eng.
,
89
, pp.
36
43
.
13.
Agathokleous
,
R.
,
Barone
,
G.
,
Buonomano
,
A.
,
Forzano
,
C.
,
Kalogirou
,
S. A.
, and
Palombo
,
A.
,
2019
, “
Building Façade Integrated Solar Thermal Collectors for Air Heating: Experimentation, Modelling and Applications
,”
Appl. Energy
,
239
, pp.
658
679
.
14.
Yu
,
T.
,
Liu
,
B.
,
Lei
,
B.
,
Yuan
,
Y.
,
Bi
,
H.
, and
Zhang
,
Z.
,
2019
, “
Thermal Performance of a Heating System Combining Solar Air Collector With Hollow Ventilated Interior Wall in Residential Buildings on Tibetan Plateau
,”
Energy
,
182
, pp.
93
109
.
15.
Yu
,
T.
,
Zhao
,
J.
,
Zhou
,
J.
, and
Lei
,
B.
,
2020
, “
Experimental and Numerical Studies on Dynamic Thermal Performance of Hollow Ventilated Interior Wall
,”
Appl. Therm. Eng.
,
180
, p.
115851
.
16.
Zhou
,
J.
,
Yu
,
T.
,
Wu
,
H.
,
Lei
,
B.
,
Zheng
,
J.
, and
Ji
,
W.
,
2020
, “
A Dynamic Model of Hollow Ventilated Interior Wall Integrated With Solar Air Collector
,”
Appl. Therm. Eng.
,
175
, p.
115380
.
17.
Zhou
,
J.
,
Yu
,
T.
, and
Lei
,
B.
,
2022
, “
Experimental Study on the Influence of Solar Heat Gain on the Thermal Performance of Hollow Ventilated Interior Wall
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031001
.
18.
Chen
,
Y.
,
Athienitis
,
A. K.
, and
Galal
,
K.
,
2010
, “
Modeling, Design and Thermal Performance of a BIPV/T System Thermally Coupled With a Ventilated Concrete Slab in a Low Energy Solar House: Part 1, BIPV/T System and House Energy Concept
,”
Sol. Energy
,
84
(
11
), pp.
1892
1907
.
19.
Chen
,
Y.
,
Galal
,
K.
, and
Athienitis
,
A. K.
,
2010
, “
Modeling, Design and Thermal Performance of a BIPV/T System Thermally Coupled With a Ventilated Concrete Slab in a Low Energy Solar House: Part 2, Ventilated Concrete Slab
,”
Sol. Energy
,
84
(
11
), pp.
1908
1919
.
20.
Li
,
L.
,
Liu
,
X.
, and
Zhang
,
T.
,
2021
, “
Performance Analysis and Instant/Delayed Characteristics of a Solar Heating System Used in Cold Regions
,”
J. Build. Eng.
,
34
, p.
101767
.
21.
Russell
,
M. B.
, and
Probert
,
S. D.
,
2004
, “
FDiff3: A Finite-Difference Solver for Facilitating Understanding of Heat Conduction and Numerical Analysis
,”
Appl. Energy
,
79
(
4
), pp.
443
456
.
22.
Barton
,
P.
,
Beggs
,
C. B.
, and
Sleigh
,
P. A.
,
2002
, “
A Theoretical Study of the Thermal Performance of the TermoDeck Hollow Core Slab System
,”
Appl. Therm. Eng.
,
22
(
13
), pp.
1485
1499
.
23.
Park
,
B.
, and
Krarti
,
M.
,
2015
, “
Development of a Simulation Analysis Environment for Ventilated Slab Systems
,”
Appl. Therm. Eng.
,
87
, pp.
66
78
.
24.
Park
,
B.
, and
Krarti
,
M.
,
2019
, “
Optimal Control Strategies for Hollow Core Ventilated Slab Systems
,”
J. Build. Eng.
,
24
, p.
100762
.
25.
Weber
,
T.
, and
Jóhannesson
,
G.
,
2005
, “
An Optimized RC-Network for Thermally Activated Building Components
,”
Build. Environ.
,
40
(
1
), pp.
1
14
.
26.
Liu
,
K.
,
Tian
,
Z.
,
Zhang1
,
C.
,
Ding
,
Y.
, and
Wang
,
W.
,
2011
, “
Establishment and Validation of Modified Star-Type RC-Network Model for Concrete Core Cooling Slab
,”
Energy Build.
,
43
(
9
), pp.
2378
2384
.
27.
Guo
,
J.
,
Dong
,
J.
,
Wang
,
H.
,
Zou
,
B.
, and
Jiang
,
Y.
,
2021
, “
A Dynamic State-Space Model for Predicting the Thermal Performance of Ventilated Electric Heating Mortar Blocks Integrated With Phase Change Material
,”
Energy Build.
,
244
, p.
111010
.
28.
Guo
,
J.
,
Wang
,
F.
,
Jiang
,
Y.
, and
Sun
,
C.
,
2024
, “
Operation Optimization of Ventilated Floor Heating System in Nearly-Zero-Energy Building
,”
J. Build. Eng.
,
86
, p.
108835
.
29.
Athienitis
,
A. K.
, and
Chen
,
Y.
,
2000
, “
The Effect of Solar Radiation on Dynamic Thermal Performance of Floor Heating Systems
,”
Sol. Energy
,
69
(
3
), pp.
229
237
.
30.
Beji
,
C.
,
Merabtine
,
A.
,
Mokraoui
,
S.
,
Kheiri
,
A.
,
Kauffmann
,
J.
, and
Bouaziz
,
N.
,
2020
, “
Experimental Study on the Effects of Direct Sun Radiation on the Dynamic Thermal Behavior of a Floor-Heating System
,”
Sol. Energy
,
204
, pp.
1
12
.
31.
Li
,
T.
,
Merabtine
,
A.
,
Lachi
,
M.
,
Martaj
,
N.
, and
Bennacer
,
R.
,
2021
, “
Experimental Study on the Thermal Comfort in the Room Equipped With a Radiant Floor Heating System Exposed to Direct Solar Radiation
,”
Energy
,
230
, p.
120800
.
32.
Bellagh
,
L.
,
Merabtine
,
A.
,
Kheiri
,
A.
,
Mokraoui
,
S.
, and
Kauffmann
,
J.
,
2021
, “
Studies on How to Counteract Overheating Caused by Sun Patch Exposure in Ventilated Highly Glazed Spaces Heated by Floor Heating Systems
,”
Sol. Energy
,
220
, pp.
991
1005
.
33.
Feng
,
J.
,
Schiavon
,
S.
, and
Bauman
,
F.
,
2016
, “
New Method for the Design of Radiant Floor Cooling Systems With Solar Radiation
,”
Energy Build.
,
125
, pp.
9
18
.
34.
Zheng
,
J.
,
Yu
,
T.
,
Lei
,
B.
, and
Chen
,
C.
,
2023
, “
Experimental Study on the Thermal Performance of Radiant Floor Heating System With the Influence of Solar Radiation on the Local Floor Surface
,”
Indoor Built Environ.
,
32
(
5
), pp.
977
991
.
35.
Zheng
,
J.
,
Yu
,
T.
,
Lei
,
B.
, and
Luo
,
X.
,
2023
, “
Evaluation of the Thermal Performance of Radiant Floor Heating System With the Influence of Unevenly Distributed Solar Radiation Based on the Theory of Discretization
,”
Build. Simul.
,
16
(
1
), pp.
105
120
.
36.
Li
,
J.
,
Zhang
,
Y.
, and
Yue
,
T.
,
2024
, “
A New Approach for Indoor Environment Design of Passive Solar Buildings in Plateau Areas
,”
Sustain. Energy Technol. Assess.
,
63
, p.
103669
.
37.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
John Wiley and Sons
,
Hoboken, NJ
.
38.
Wu
,
M.
,
Liu
,
X.
, and
Tang
,
H.
,
2015
, “
Simulation Analysis on the Solar Heating System Combined With Tabs in Lhasa, China of Annex 59
,”
Energy Procedia
,
78
, pp.
2439
2444
.
39.
Fraisse
,
G.
,
Viardot
,
C.
,
Lafabrie
,
O.
, and
Achard
,
G.
,
2002
, “
Development of a Simplified and Accurate Building Model Based on Electrical Analogy
,”
Energy Build.
,
34
(
10
), pp.
1017
1031
.
40.
Yan
,
Q.
, and
Zhao
,
Q.
,
1986
,
Thermal Process of Building
,
China Architecture & Building Press
,
Beijing
.
41.
Arasteh
,
D.
,
Kohler
,
C.
, and
Griffith
,
B.
,
2009
,
Modeling Windows in Energy Plus With Simple Performance Indices, LBNL-2804E
,
Lawrence Berkeley National Lab. (LBNL)
,
Berkeley, CA
.
42.
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
2023
,
ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy
,
ASHRAE
,
Atlanta, GA
.
43.
Frazzica
,
A.
,
Brancato
,
V.
,
Palomba
,
V.
,
La Rosa
,
D.
,
Grungo
,
F.
,
Calabrese
,
L.
, and
Proverbio
,
E.
,
2019
, “
Thermal Performance of Hybrid Cement Mortar-PCMs for Warm Climates Application
,”
Sol. Energy Mater. Sol. Cells
,
193
, pp.
270
280
.
44.
Ren
,
M. J.
, and
Wright
,
J. A.
,
1998
, “
A Ventilated Slab Thermal Storage System Model
,”
Build. Environ.
,
33
(
1
), pp.
43
52
.
45.
Yu
,
J.
,
Huang
,
J.
,
Xu
,
X.
,
Ye
,
H.
,
Xiong
,
C.
,
Wang
,
J.
, and
Tian
,
L.
,
2017
, “
A Semi-dynamic Heat Transfer Model of Hollow Block Ventilated Wall for Thermal Performance Prediction
,”
Energy Build.
,
134
, pp.
285
294
.
46.
Yang
,
M.
,
2011
, “
Sustainable Roadmap and Key Technology Development on ‘Zero-Coal, Low Energy’ Rural Housing in Northern China
,”
Ph.D. thesis
,
Tsinghua University
,
Beijing
.
You do not currently have access to this content.