Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A preliminary approach has been made to assess the concentrated solar energy applications in cement production as well as greenhouse gas mitigation potential. The work starts with identification of processes that utilize thermal energy in cement production. Then, a cluster of cement plants located at different locations in the country has been made. Also, the availability of solar radiation and wind speed at each plant location have been identified. Subsequently, the solar industrial process heating systems have been developed for different locations in the country. Further, solar reactor output, number of heliostats, total land area and mirror surface have been estimated. All these estimations are done by considering three types of thermal losses in solar reactors, i.e., 15, 30 and 45%, respectively. Solar energy can provide a total of 738.11 PJ of thermal energy, which is needed to fulfill the process heating requirement of the calcination process for the manufacturing of cement in India. Solar industrial process heating systems for cement production in India can reduce yearly CO2 emissions by 2457–7648 thousand tons.

References

1.
Sakhamuru
,
D. R.
,
2022
, “
Techno-Economic Analysis and Strategic Decarbonization of the Indian Cement Industry
,”
Graduate theses
,
System Design and Management Program, Massachusetts Institute of Technology
,
Cambridge, MA
. https://hdl.handle.net/1721.1/144640.
2.
Indian Minerals Yearbook
,
2021
, (Part-III: Mineral Reviews) 60th Edition. https://ibm.gov.in/writereaddata/files/169052447764c35b3dd9249Cement_2021.pdf, Accessed July 7, 2023.
3.
Sahoo
,
N.
,
Kumar
,
A.
, and
Samsher
,
S.
,
2022
, “
Review on Energy Conservation and Emission Reduction Approaches for Cement Industry
,”
Environ. Dev.
,
44
, p.
100767
.
4.
Meier
,
A.
,
Gremaud
,
N.
, and
Steinfeld
,
A.
,
2005
, “
Economic Evaluation of the Industrial Solar Production of Lime
,”
Energy Convers. Manage.
,
46
(
6
), pp.
905
926
.
5.
Meier
,
A.
,
Bonaldi
,
E.
,
Cella
,
G. M.
,
Lipinski
,
W.
, and
Wuillemin
,
D.
,
2006
, “
Solar Chemical Reactor Technology for Industrial Production of Lime
,”
Sol. Energy
,
80
(
10
), pp.
1355
1362
.
6.
Gonzalez
,
R. S.
, and
Flamant
,
G.
,
2013
, “
Technical and Economic Feasibility Analysis of Using Concentrated Solar Thermal Technology in the Cement Production Process: Hybrid Approach—A Case Study
,”
ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
,
Minneapolis, MN
,
July 14–19
.
7.
Moumin
,
G.
,
Ryssel
,
M.
,
Zhao
,
L.
,
Markewitz
,
P.
,
Sattler
,
C.
,
Robinius
,
M.
, and
Stolten
,
D.
,
2020
, “
CO2 Emission Reduction in the Cement Industry by Using a Solar Calciner
,”
Renew. Energy
,
145
, pp.
1578
1596
.
8.
Sahoo
,
N.
,
Kumar
,
A.
, and
Samsher
,
2022
, “A Preliminary Assessment of Solar Industrial Process Heating for Cement Industry,”
Advances in Mechanical and Materials Technology, EMSME 2020, Lecture Notes in Mechanical Engineering
,
K.
Govindan
,
H.
Kumar
, and
S.
Yadav
, eds.,
Springer
,
Singapore
.
9.
Sahoo
,
N.
,
Kumar
,
A.
, and
Samsher
,
2023
, “Solar Industrial Process Heating Prospects in Indian Cement Industries,”
Advances in Mechanical and Energy Technology, ICMET 2021, Lecture Notes in Mechanical Engineering
,
S.
Yadav
,
P. K.
Jain
,
P. K.
Kankar
, and
Y.
Shrivastava
, eds.,
Springer
,
Singapore
.
10.
Sahoo
,
N.
,
Kumar
,
A.
, and
Samsher
,
2023
, “
Potential of Solar Thermal Calciner Technology for Cement Production in India and Consequent Carbon Mitigation
,”
Process Saf. Environ. Prot.
,
179
, pp.
667
676
.
11.
Sahoo
,
N.
,
Kumar
,
A.
, and
Samsher
,
2023
, “
Design of Solar Cement Plant for Supplying Thermal Energy in Cement Production
,”
J. Clean. Prod.
,
426
, p.
139151
.
12.
Sahoo
,
N.
, and
Kumar
,
A.
,
2023
, “
Potential Assessment of Solar Industrial Process Heating and CO2 Emission Reduction for Indian Cement Industry
,”
Sol. Compass
,
8
, p.
100064
.
13.
Stafford
,
F. N.
,
Dias
,
A. C.
,
Arroja
,
L.
,
Labrincha
,
J. A.
, and
Hotza
,
D.
,
2016
, “
Life Cycle Assessment of the Production of Portland Cement: A Southern Europe Case Study
,”
J. Clean. Prod.
,
126
, pp.
159
165
.
14.
Mohamad
,
N.
,
Muthusamy
,
K.
,
Embong
,
R.
,
Kusbiantoro
,
A.
, and
Hashim
,
M. H.
,
2022
, “
Environmental Impact of Cement Production and Solutions: A Review
,”
Mater. Today: Proc.
,
48
(
part 4
), pp.
741
746
.
15.
ACC LIMITED
,
2015
, “Sustainable Development Report,”. https://www.acclimited.com/assets/new/pdf/ACC-SD-Report_02_240816.pdf. Accessed September 7, 2023.
16.
Taylor
,
G.
, and
Jago
,
P. B.
,
2005
, “
Canadian Industry Program for Energy Conservation: The Voluntary Approach to Improving Industrial Energy Efficiency in Canada
,”
ACEEE Summer Study on Energy Efficiency in Industry
,
Canada
.
17.
Schumacher
,
K.
, and
Sathaye
,
J.
,
1999
, “India's Cement Industry: Productivity, Energy Efficiency and Carbon Emissions,” Report No. LBNL-41842, Ernest Orlando Lawrence Berkeley National Lab., CA.
18.
Schorcht
,
F.
,
Kourti
,
I.
,
Scalet
,
B. M.
,
Roudier
,
S.
, and
Sancho
,
L. D.
,
2013
,
Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide
,
European Commission Joint Research Centre Institute for Prospective Technological Studies
,
Luxembourg
, p.
506
. https://core.ac.uk/download/pdf/38626619.pdf.
19.
Madlool
,
N. A.
,
Saidur
,
R.
,
Hossain
,
M. S.
, and
Rahim
,
N. A.
,
2011
, “
A Critical Review on Energy Use and Savings in the Cement Industries
,”
Renew. Sustainable Energy Rev.
,
15
(
4
), pp.
2042
2060
.
20.
Madlool
,
N. A.
,
Saidur
,
R.
,
Rahim
,
N. A.
,
Islam
,
M. R.
, and
Hossian
,
M. S.
,
2012
, “
An Exergy Analysis for Cement Industries: An Overview
,”
Renew. Sustainable Energy Rev.
,
16
(
1
), pp.
921
932
.
21.
Ahamed
,
J. U.
,
Madlool
,
N. A.
,
Saidur
,
R.
,
Shahinuddin
,
M. I.
,
Kamyar
,
A.
, and
Masjuki
,
H. H.
,
2012
, “
Assessment of Energy and Exergy Efficiencies of a Grate Clinker Cooling System Through the Optimization of its Operational Parameters
,”
Energy
,
46
(
1
), pp.
664
674
.
22.
Worrell
,
E.
,
Martin
,
N.
, and
Price
,
L.
,
2000
, “
Potentials for Energy Efficiency Improvement in the US Cement Industry
,”
Energy
,
25
(
12
), pp.
1189
1214
.
23.
Saidur
,
R.
,
2009
, “
Energy Consumption, Energy Savings, and Emission Analysis in Malaysian Office Buildings
,”
Energy Policy
,
37
(
10
), pp.
4104
4113
.
24.
Reich
,
L.
,
Melmoth
,
L.
,
Yue
,
L.
,
Bader
,
R.
,
Gresham
,
R.
,
Simon
,
T.
, and
Lipiński
,
W.
,
2017
, “
A Solar Reactor Design for Research on Calcium Oxide-Based Carbon Dioxide Capture
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
054501
.
25.
Augustine
,
C.
,
Zolan
,
A.
, and
Armijo
,
K.
,
2024
, “
Analysis of Gaps in Techno-Economic Analysis to Advance Heliostat Technologies for Concentrating Solar-Thermal Power
,”
ASME J. Sol. Energy Eng.
,
146
(
6
), p.
061002
.
26.
Li
,
Q.
,
Flamant
,
G.
,
Yuan
,
X.
,
Neveu
,
P.
, and
Luo
,
L.
,
2011
, “
Compact Heat Exchangers: A Review and Future Applications for A New Generation of High Temperature Solar Receivers
,”
Renew. Sustainable Energy Rev.
,
15
(
9
), pp.
4855
4875
.
27.
Jackson
,
G. S.
,
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Miller
,
D. C.
, and
Braun
,
R. J.
,
2019
, “
Inert and Reactive Oxide Particles for High-Temperature Thermal Energy Capture and Storage for Concentrating Solar Power
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021016
.
28.
Zhang
,
Y.
,
Haddad
,
F.
, and
Li
,
P.
,
2025
, “
Analysis of Heat Transfer of Molten Salts Startup Flow in Cold Pipes Avoiding Freezing in Solar and Nuclear Energy Systems
,”
ASME J. Sol. Energy Eng.
,
147
(
1
), p.
011002
.
29.
Trieb
,
F.
,
2009
, “
Global Potential of Concentrating Solar Power
,”
SolarPaces Conference
,
Berlin, Germany
,
September
.
30.
Voldsund
,
M.
,
Gardarsdottir
,
S. O.
,
De Lena
,
E.
,
Pérez-Calvo
,
J. F.
,
Jamali
,
A.
,
Berstad
,
D.
,
Fu
,
C.
, et al
,
2019
, “
Comparison of Technologies for CO2 Capture from Cement Production—Part 1: Technical Evaluation
,”
Energies
,
12
(
3
), p.
559
.
31.
Gardarsdottir
,
S. O.
,
De Lena
,
E.
,
Romano
,
M.
,
Roussanaly
,
S.
,
Voldsund
,
M.
,
Pérez-Calvo
,
J. F.
,
Berstad
,
D.
, et al
,
2019
, “
Comparison of Technologies for CO2 Capture from Cement Production—Part 2: Cost Analysis
,”
Energies
,
12
(
3
), p.
542
.
32.
Markewitz
,
P.
,
Zhao
,
L.
,
Ryssel
,
M.
,
Moumin
,
G.
,
Wang
,
Y.
,
Sattler
,
C.
,
Robinius
,
M.
, and
Stolten
,
D.
,
2019
, “
Carbon Capture for CO2 Emission Reduction in the Cement Industry in Germany
,”
Energies
,
12
(
12
), p.
2432
.
33.
De Lena
,
E.
,
Spinelli
,
M.
,
Gatti
,
M.
,
Scaccabarozzi
,
R.
,
Campanari
,
S.
,
Consonni
,
S.
,
Cinti
,
G.
, and
Romano
,
M. C.
,
2019
, “
Techno-Economic Analysis of Calcium Looping Processes for Low CO2 Emission Cement Plants
,”
Int. J. Greenhouse Gas Control
,
82
, pp.
244
260
.
You do not currently have access to this content.