Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The growing use of intermittent renewables in electrical grids increasingly motivates load-following operations as a crucial capability of dispatchable power plants. However, frequent load variations in steam generation equipment can cause premature heat exchanger failure. This paper simulates the dynamic behavior of a high pressure, U-tube/U-shell, salt-to-steam superheater typically found in tower-type concentrating solar power subcritical Rankine cycles. Results focus on responses during load-following and inlet temperature changes. The proposed model is a finite volume method, and thermodynamic and heat transfer properties of both fluids are allowed to vary spatially and temporally. Several flow ramping schemes are investigated, including proportionally equal ramps and proportionally dissimilar ramping, where one fluid reaches its mass flow setpoint faster than the other. Results indicate that salt outlet temperature overshoot can occur if ramp rates are of sufficiently high magnitude, and that U-bend metal temperature rate of change can be approximately 2.5× that observed at either outlet. If proportionally-matched ramping is not possible, ramping steam more slowly than the salt is preferred over the alternative, as cold side and U-bend temperature responses are better regulated. Additionally, mass flowrate and inlet temperature changes are shown to elicit unique responses in the tube bundle metal.

References

1.
Silverman
,
T.
, and
Huang
,
H.
,
2021
, “Solar Energy Technologies Office Multi-year Program Plan,” Technical Report, SETO, Washington, DC.
2.
EIA
,
2021
, “Electricity in the United States,” https://www.eia.gov/energyexplained/electricity/electricity-in-the-us.php.
3.
Guédez
,
R.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2015
, “
Reducing the Number of Turbine Starts in Concentrating Solar Power Plants Through the Integration of Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
137
(
1
), p.
011003
.
4.
Ho
,
C. K.
,
Carlson
,
M.
,
Albrecht
,
K. J.
,
Ma
,
Z.
,
Jeter
,
S.
, and
Nguyen
,
C. M.
,
2019
, “
Evaluation of Alternative Designs for a High Temperature Particle-to-sCO2 Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021001
.
5.
González-Gómez
,
P.
,
Gómez-Hernández
,
J.
,
Ferruzza
,
D.
,
Haglind
,
F.
, and
Santana
,
D.
,
2019
, “
Dynamic Performance and Stress Analysis of the Steam Generator of Parabolic Trough Solar Power Plants
,”
Appl. Therm. Eng.
,
147
, pp.
804
818
.
6.
Ferruzza
,
D.
,
Kærn
,
M. R.
, and
Haglind
,
F.
,
2020
, “
A Method to Account for Transient Performance Requirements in the Design of Steam Generators for Concentrated Solar Power Applications
,”
Appl. Energy
,
269
, p.
114931
.
7.
Benato
,
A.
,
Bracco
,
S.
,
Stoppato
,
A.
, and
Mirandola
,
A.
,
2016
, “
LTE: A Procedure to Predict Power Plants Dynamic Behaviour and Components Lifetime Reduction During Transient Operation
,”
Appl. Energy
,
162
, pp.
880
891
.
8.
Roetzel
,
W.
, and
Xuan
,
Y.
,
1992
, “
Transient Behaviour of Multipass Shell-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
35
(
3
), pp.
703
710
.
9.
Morris
,
H.
,
1960
, “
Dynamic Response of Shell and Tube Heat Exchangers to Temperature Disturbances
,”
IFAC Proc. Vol.
,
1
(
1
), pp.
1867
1872
.
10.
Roetzel
,
W.
,
Li
,
M.
, and
Luo
,
X.
,
2002
, “
Dynamic Behaviour of Heat Exchangers
,” Seventh International Conference on Advanced Computational Methods in Heat Transfer: Heat Transfer VII, Vol.
4
,
WIT Press
, pp.
451
460
.
11.
Yimin
,
X.
, and
Roetzel
,
W.
,
1993
, “
Stationary and Dynamic Simulation of Multipass Shell and Tube Heat Exchangers With the Dispersion Model for Both Fluids
,”
Int. J. Heat Mass Transfer
,
36
(
17
), pp.
4221
4231
.
12.
Ansari
,
M.
, and
Mortazavi
,
V.
,
2006
, “
Simulation of Dynamical Response of a Countercurrent Heat Exchanger to Inlet Temperature or Mass Flow Rate Change
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2401
2408
.
13.
Zhang
,
Y.
,
Haddad
,
F.
, and
Li
,
P.
,
2025
, “
Analysis of Heat Transfer of Molten Salts Startup Flow in Cold Pipes Avoiding Freezing in Solar and Nuclear Energy Systems
,”
ASME J. Sol. Energy Eng.
,
147
(
1
), p.
011002
.
14.
Zhang
,
Q.
,
Wang
,
Z.
,
Du
,
X.
,
Yu
,
G.
, and
Wu
,
H.
,
2019
, “
Dynamic Simulation of Steam Generation System in Solar Tower Power Plant
,”
Renew. Energy
,
135
, pp.
866
876
.
15.
Li
,
X.
,
Xu
,
E.
,
Ma
,
L.
,
Song
,
S.
, and
Xu
,
L.
,
2019
, “
Modeling and Dynamic Simulation of a Steam Generation System for a Parabolic Trough Solar Power Plant
,”
Renew. Energy
,
132
, pp.
998
1017
.
16.
Gaddis
,
E.
, and
Schlünder
,
E.
,
1979
, “
Temperature Distribution and Heat Exchange in Multipass Shell-and-Tube Exchangers With Baffles
,”
Heat Transfer Eng.
,
1
(
1
), pp.
43
52
.
17.
Roppo
,
M.
, and
Ganl
,
E.
,
1983
, “
Time-Dependent Heat Exchanger Modeling
,”
Heat Transfer Eng.
,
4
(
2
), pp.
42
46
.
18.
Correa
,
D. J.
, and
Marchetti
,
J. L.
,
1987
, “
Dynamic Simulation of Shell-and-Tube Heat Exchangers
,”
Heat Transfer Eng.
,
8
(
1
), pp.
50
59
.
19.
Botsch
,
T.
,
Stephan
,
K.
,
Alcock
,
J.-L.
, and
Webb
,
D.
,
1997
, “
Modelling and Simulation of the Dynamic Behaviour of a Shell-and-Tube Condenser
,”
Int. J. Heat Mass Transfer
,
40
(
17
), pp.
4137
4149
.
20.
Manenti
,
F.
, and
Ravaghi-Ardebili
,
Z.
,
2013
, “
Dynamic Simulation of Concentrating Solar Power Plant and Two-Tanks Direct Thermal Energy Storage
,”
Energy
,
55
, pp.
89
97
.
21.
Zaversky
,
F.
,
Sánchez
,
M.
, and
Astrain
,
D.
,
2014
, “
Object-Oriented Modeling for the Transient Response Simulation of Multi-pass Shell-and-Tube Heat Exchangers as Applied in Active Indirect Thermal Energy Storage Systems for Concentrated Solar Power
,”
Energy
,
65
, pp.
647
664
.
22.
Wang
,
C.
,
Liu
,
M.
,
Zhao
,
Y.
,
Chong
,
D.
, and
Yan
,
J.
,
2020
, “
Entropy Generation Distribution Characteristics of a Supercritical Boiler Superheater During Transient Processes
,”
Energy
,
201
, p.
117596
.
23.
Bonilla
,
J.
,
Rodríguez-García
,
M. M.
,
Roca
,
L.
, and
Valenzuela
,
L.
,
2017
, “
Study on Shell-and-Tube Heat Exchanger Models With Different Degree of Complexity for Process Simulation and Control Design
,”
Appl. Therm. Eng.
,
124
, pp.
1425
1440
.
24.
Abutayeh
,
M.
, and
Alazzam
,
A.
,
2017
, “
Adapting Steady-State Solar Power Models to Include Transients
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021006
.
25.
González-Gómez
,
P.
,
Gómez-Hernández
,
J.
,
Briongos
,
J.
, and
Santana
,
D.
,
2018
, “
Transient Thermo-Mechanical Analysis of Steam Generators for Solar Tower Plants
,”
Appl. Energy
,
212
, pp.
1051
1068
.
26.
González-Gómez
,
P.
,
Gómez-Hernández
,
J.
,
Briongos
,
J. V.
, and
Santana
,
D.
,
2017
, “
Thermo-Economic Optimization of Molten Salt Steam Generators
,”
Energy Convers. Manage
,
146
, pp.
228
243
.
27.
Pacheco
,
J. E.
,
Ralph
,
M. E.
,
Chavez
,
J. M.
,
Dunkin
,
S. R.
,
Rush
,
E. E.
,
Ghanbari
,
C. M.
, and
Matthews
,
M. W.
,
1995
, “Results of Molten Salt Panel and Component Experiments for Solar Central Receivers: Cold Fill, Freeze/Thaw, Thermal Cycling and Shock, and Instrumentation Tests,” Technical Report, Sandia National Laboratory (SNL-NM), Golden, CO, January.
28.
Isentropic Development
2022
, “FIT Steam Property Library for Matlab,” https://www.isentropic.dev.
29.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, https://www.nist.gov/srd/refprop.
30.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
31.
Žukauskas
,
A.
,
1972
, “Heat Transfer From Tubes in Crossflow,”
Advances in Heat Transfer
, Vol.
8
,
J.
Harnett
and
J. T. F.
Invine
, eds.,
Academic Press
,
New York
, pp.
93
160
.
32.
Taborek
,
J.
,
2008
, “Longitudinal Flow in Tube Bundles With Grid Baffles-Section 3.3.12,”
Heat Exchanger Design Handbook, Part 3
,
G.
Hewitt
, ed.,
Begell House
,
New York
.
33.
Klein
,
S.
,
2023
, EES—Engineering Equation Solver, v11.663. https://www.fchartsoftware.com/ees/.
34.
Nellis
,
G.
, and
Klein
,
S.
,
2008
,
Heat Transfer
,
Cambridge University Press
,
New York
, pp.
897
902
.
35.
Mehos
,
M.
,
Price
,
H.
,
Cable
,
R.
,
Kearney
,
D.
,
Kelly
,
B.
,
Kolb
,
G.
, and
Morse
,
F.
,
2020
, “Concentrating Solar Power Best Practices Study,” Technical Report, National Renewable Energy Lab. (NREL), Golden, CO.
You do not currently have access to this content.