Abstract

Wind loads are a major driver of heliostat cost. Standardized methods and tools are needed for a more detailed understanding of the static and dynamic loads of a heliostat design. This will enable cost reduction of wind-dependent heliostats to avoid unnecessarily conservative heliostat designs and increase field efficiency and reliability to reduce the risk of component failures due to high-wind events. Gaps related to wind load include lack of site characterization for wind measurements, insufficient critical load cases for heliostat design, insufficient understanding of turbulence impacts on heliostat tracking error, lack of knowledge on wind load under various heliostat array configurations, and underexplored heliostat field wind-load reduction and operating strategies. Recommended pathway forward is to develop wind load and site characterization guidelines for heliostat design and develop heliostat field wind-load models with optical performance impacts.

References

1.
Emes
,
M. J.
,
Jafari
,
A.
,
Coventry
,
J.
, and
Arjomandi
,
M.
,
2020
, “
The Influence of Atmospheric Boundary Layer Turbulence on the Design Wind Loads and Cost of Heliostats
,”
Sol. Energy
,
207
, pp.
796
812
.
2.
Pfahl
,
A.
,
Coventry
,
J.
,
Röger
,
M.
,
Wolfertstetter
,
F.
,
Vásquez-Arango
,
J. F.
,
Gross
,
F.
,
Arjomandi
,
M.
,
Schwarzbözl
,
P.
,
Geiger
,
M.
, and
Liedke
,
P.
,
2017
, “
Progress in Heliostat Development
,”
Sol. Energy
,
152
, pp.
3
37
.
3.
Peterka
,
J. A.
, and
Derickson
,
R. G.
,
1992
, “
Wind Load Design Methods for Ground Based Heliostats and Parabolic Dish Collectors
,” Sandia National Laboratories Report No. SAND92-7009.
4.
Emes
,
M.
,
Jafari
,
A.
,
Pfahl
,
A.
,
Coventry
,
J.
, and
Arjomandi
,
M.
,
2021
, “
A Review of Static and Dynamic Heliostat Wind Loads
,”
Sol. Energy
,
225
, pp.
60
82
.
5.
Pfahl
,
A.
,
Buselmeier
,
M.
, and
Zaschke
,
M.
,
2011
, “
Determination of Wind Loads on Heliostats
,”
SolarPACES
,
Granada, Spain
,
Sept. 20–23
.
6.
Jafari
,
A.
,
Emes
,
M.
,
Cazzolato
,
B.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2020
, “
An Experimental Investigation of Unsteady Pressure Distribution on Tandem Heliostats
,”
AIP Conf. Proc.
,
2303
(
1
), p.
030022
.
7.
Jafari
,
A.
,
Emes
,
M.
,
Cazzolato
,
B.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2020
, “
Turbulence Characteristics in the Wake of a Heliostat in an Atmospheric Boundary Layer Flow
,”
Phys. Fluids
,
32
(
4
), p.
045116
.
8.
Yuan
,
J. K.
,
Christian
,
J. M.
, and
Ho
,
C. K.
,
2015
, “
Compensation of Gravity Induced Heliostat Deflections for Improved Optical Performance
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021016
.
9.
Arbes
,
F.
,
Wöhrbach
,
M.
,
Gebreiter
,
D.
, and
Weinrebe
,
G.
,
2017
, “
Towards High Efficiency Heliostat Fields
,”
AIP Conf. Proc.
,
1850
, p.
030001
.
10.
Kolb
,
G. J.
,
Jones
,
S. A.
,
Donnelly
,
M. W.
,
Gorman
,
D.
,
Thomas
,
R.
,
Davenport
,
R.
, and
Lumia
,
R.
,
2007
, “
“Heliostat Cost Reduction Study
,” Albuquerque, New Mexico, Sandia National Laboratories, Report No. SAND2007-3293.
11.
Blackmon
,
J. B.
,
2014
, “
Heliostat Drive Unit Design Considerations—Site Wind Load Effects on Projected Fatigue Life and Safety Factor
,”
Sol. Energy
,
105
, pp.
170
180
.
12.
Benammar
,
S.
, and
Tee
,
K. F.
,
2019
, “
Structural Reliability Analysis of a Heliostat Under Wind Load for Concentrating Solar Power
,”
Sol. Energy
,
181
, pp.
43
52
.
13.
Téllez
,
F.
,
Burisch
,
M.
,
Villasente
,
C.
,
Sánchez
,
M.
,
Sansom
,
C.
,
Kirby
,
P.
,
Turner
,
P.
, et al
,
2014
, “
State of the Art in Heliostats and Definition of Specifications
,” STAGE-STE Project, Madrid, 609837.
14.
Price
,
H.
,
Mehos
,
M. S.
,
Cable
,
R.
,
Kearney
,
D.
,
Kelly
,
B.
,
Kolb
,
G.
, and
Morse
,
F.
,
2020
, “
CSP Plant Construction, Start-Up, and O&M Best Practices Study
,”
AIP Conf. Proc.
,
2303
(
1
), p.
040002
.
15.
Emes
,
M. J.
,
Jafari
,
A.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2019
, “
Hinge and Overturning Moments due to Unsteady Heliostat Pressure Distributions in a Turbulent Atmospheric Boundary Layer
,”
Sol. Energy
,
193
, pp.
604
617
.
16.
von Reeken
,
F.
,
Weinrebe
,
G.
, and
Balz
,
M.
,
2016
, “
Special Stiffness Requirements of Heliostats for Regions With High Operational Wind Speeds
,”
SolarPACES
,
Abu Dhabi, United Arab Emirates
,
Oct. 11–14
.
17.
Blume
,
K.
,
Röger
,
M.
,
Schlichting
,
T.
,
Macke
,
A.
, and
Pitz-Paal
,
R.
,
2020
, “
Dynamic Photogrammetry Applied to a Real Scale Heliostat: Insights Into the Wind-Induced Behavior and Effects on the Optical Performance
,”
Sol. Energy
,
212
, pp.
297
308
.
18.
ASCE 7-02
,
2002
,
Minimum Design Wind Loads for Buildings and Other Structures
,
American Society of Civil Engineers
,
Reston, VA
.
19.
AS/NZS 1170.2
,
2011
,
Structural Design Actions—Part 2: Wind Actions
,
Standards Australia and Standards New Zealand
,
Sydney
.
20.
Murphy
,
L. M.
,
1980
, “
Wind Loading on Tracking and Field-Mounted Solar Collectors
,” Solar Energy Research Institute, Report No. SERI-TP-632-958,
Golden, CO
.
21.
Emes
,
M.
,
Jafari
,
A.
,
Collins
,
M.
,
Wilbert
,
S.
,
Zarzalejo
,
L.
,
Siegrist
,
S.
, and
Arjomandi
,
M.
,
2022
, “
Stowing Strategy for a Heliostat Field Based on Wind Speed and Direction
,”
AIP Conf. Proc.
,
2445
(
1
), p.
120011
.
22.
Peterka
,
J. A.
,
Tan
,
Z.
,
Cermak
,
J. E.
, and
Bienkiewicz
,
B.
,
1989
, “
Mean and Peak Wind Loads on Heliostats
,”
ASME J. Sol. Energy Eng.
,
111
(
2
), pp.
158
164
.
23.
Jafari
,
A.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
,
Emes
,
M. J.
, and
Cazzolato
,
B. S.
,
2019
, “
Correlating Turbulence Intensity and Length Scale With the Unsteady Lift Force on Flat Plates in an Atmospheric Boundary Layer Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
189
, pp.
218
230
.
24.
Pfahl
,
A.
,
Buselmeier
,
M.
, and
Zaschke
,
M.
,
2011
, “
Wind Loads on Heliostats and Photovoltaic Trackers of Various Aspect Ratios
,”
Sol. Energy
,
85
(
9
), pp.
2185
2201
.
25.
Griffith
,
D. T.
,
Moya
,
A. C.
,
Ho
,
C. K.
, and
Hunter
,
P. S.
,
2015
, “
Structural Dynamics Testing and Analysis for Design Evaluation and Monitoring of Heliostats
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021010
.
26.
Ho
,
C. K.
,
Griffith
,
D. T.
,
Sment
,
J.
,
Moya
,
A. C.
,
Christian
,
J. M.
,
Yuan
,
J. K.
, and
Hunter
,
P. S.
,
2012
, “
Dynamic Testing and Analysis of Heliostats to Evaluate Impacts of Wind on Optical Performance and Structural Fatigue
,”
AIP Conf. Proc.
, p.
22695
.
27.
Jafari
,
A.
,
Ghanadi
,
F.
,
Emes
,
M. J.
,
Arjomandi
,
M.
, and
Cazzolato
,
B. S.
,
2019
, “
Measurement of Unsteady Wind Loads in a Wind Tunnel: Scaling of Turbulence Spectra
,”
J. Wind Eng. Ind. Aerodyn.
,
193
, p.
103955
.
28.
Emes
,
M. J.
,
Jafari
,
A.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2019
, “
A Method for the Calculation of the Design Wind Loads on Heliostats
,”
AIP Conf. Proc.
,
2126
(
1
), p.
030020
.
29.
Powers
,
J. G.
,
Klemp
,
J. B.
,
Skamarock
,
W. C.
,
Davis
,
C. A.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Coen
,
J. L.
, et al
,
2017
, “
The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions
,”
Bull. Am. Meteorol. Soc.
,
98
(
8
), pp.
1717
1737
.
30.
Wyngaard
,
J. C.
,
2004
, “
Toward Numerical Modeling in the ‘Terra Incognita
,”
J. Atmos. Sci.
,
61
(
14
), pp.
1816
1826
.
31.
Wolmarans
,
J. R.
, and
Craig
,
K. J.
,
2019
, “
One-Way Fluid-Structure Interaction of a Medium-Sized Heliostat Using Scale-Resolving CFD Simulation
,”
Sol. Energy
,
191
, pp.
84
99
.
32.
Yellapantula
,
S.
,
Vijayakumar
,
G.
,
Kesseli
,
D.
,
Ananthan
,
S.
, and
Mehos
,
M.
,
2022
, “
Aerodynamic Analysis of Wind Loading on Parabolic Trough Collectors Using High-Fidelity CFD Modeling
,”
AIP Conf. Proc.
,
2445
(
1
), p.
030023
.
33.
Vásquez-Arango
,
J. F.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2015
, “
Dynamic Properties of a Heliostat Structure Determined by Numerical and Experimental Modal Analysis
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051001
.
34.
Emes
,
M. J.
,
Jafari
,
A.
, and
Arjomandi
,
M.
,
2022
, “
A Feasibility Study on the Application of Mesh Grids for Heliostat Wind Load Reduction
,”
Sol. Energy
,
240
, pp.
121
130
.
35.
Pfahl
,
A.
,
2014
, “
Survey of Heliostat Concepts for Cost Reduction
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
014501
.
36.
Pfahl
,
A.
,
Brucks
,
A.
, and
Holze
,
C.
,
2014
, “
Wind Load Reduction for Light-Weight Heliostats
,”
Energy Procedia
,
49
, pp.
193
200
.
37.
Kurup
,
P.
,
Akar
,
S.
,
Glynn
,
S.
,
Augustine
,
C.
, and
Davenport
,
P.
,
2022
, “
Cost Update: Commercial and Advanced Heliostat Collectors
,” National Renewable Energy Laboratory Report No. NREL/TP-7A40-80482, Golden, CO. https://www.osti.gov/servlets/purl/1847876/
38.
Lovegrove
,
K.
, and
Stein
,
W.
,
2021
, “Woodhead Publishing Series in Energy,”
Concentrating Solar Power Technology
, 1st ed.,
Woodhead Publishing
,
Cambridge, UK
, pp.
43
47
.
39.
Emes
,
M.
,
Yellapantula
,
S.
,
Sment
,
J.
,
Armijo
,
K.
,
Muller
,
M.
,
Mehos
,
M.
,
Brost
,
R.
, and
Arjomandi
,
M.
,
2022
, “
Heliostat Consortium: Gap Analysis on Wind Load for Achieving a Fully Competitive Heliostat Industry
,”
SolarPACES
,
Albuquerque, NM
,
Sept. 26–30
.
40.
Zhu
,
G.
,
Augustine
,
C.
,
Mitchell
,
R.
,
Muller
,
M.
,
Kurup
,
P.
,
Zolan
,
A.
,
Yellapantula
,
S.
, et al
,
2022
, “
Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power
,” National Renewable Energy Report No. NREL/TP-5700-83041.
You do not currently have access to this content.