Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The present research integrates the concept of double-pass (DP) flows with high-temperature solar receivers to introduce an innovative design aimed at minimizing heat losses and optimizing performance. The new DP system was developed using a tubular absorber derived from billboard solar tower technology and operated with air as the heat transfer medium. Computational fluid dynamic models are developed based on an experimental campaign conducted at a solar furnace facility. The computational analyses indicated that employing the DP design instead of single-pass (SP) absorbers results in an average enhancement of energy and exergy efficiency by 35% and 225%, respectively, across all test conditions. However, this enhancement is accompanied by an average increase in pressure drop of ∼60%. The detailed exergy analysis also revealed the contribution of each term in the exergetic performance, identifying the exergy destruction between the sun and the absorber as the primary source, accounting for an average of ∼65% of the total inlet exergy for both SP and DP absorbers. Consequently, the DP presents itself as a promising alternative design for future solar tower configurations, offering improved Nu numbers up to ∼50% in air-based solar systems.

References

1.
IRENA
,
2021
,
World Energy Transitions Outlook: 1.5 °C Pathway
,
International Renewable Energy Agency
,
Abu Dhabi
.
2.
Heller
,
P.
,
2017
, “1—Introduction to CSP Systems and Performance,”
The Performance of Concentrated Solar Power (CSP) Systems
,
P.
Heller
, ed.,
Woodhead Publishing
,
Sawston, UK
, pp.
1
29
.
3.
Lerede
,
D.
, and
Savoldi
,
L.
,
2023
, “
Might Future Electricity Generation Suffice to Meet the Global Demand?
,”
Energy Strateg. Rev.
,
47
, p.
101080
.
4.
IEA
,
2021
,
Renewables 2021: Analysis and Forecasts to 2026
,
IEA
,
Paris.
5.
He
,
Y.-L.
,
Wang
,
K.
,
Qiu
,
Y.
,
Du
,
B.-C.
,
Liang
,
Q.
, and
Du
,
S.
,
2019
, “
Review of the Solar Flux Distribution in Concentrated Solar Power: Non-Uniform Features, Challenges, and Solutions
,”
Appl. Therm. Eng.
,
149
, pp.
448
474
.
6.
Abdulhamed
,
A. J.
,
Adam
,
N. M.
,
Ab-Kadir
,
M. Z. A.
, and
Hairuddin
,
A. A.
,
2018
, “
Review of Solar Parabolic-Trough Collector Geometrical and Thermal Analyses, Performance, and Applications
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
822
831
.
7.
Cinocca
,
A.
,
Cipollone
,
R.
,
Carapellucci
,
R.
,
Iampieri
,
V.
, and
Rivo
,
M.
,
2018
, “
CSP-PT Gas Plant Using Air as Heat Transfer Fluid With a Packed-Bed Storage Section
,”
Energy Procedia
,
148
, pp.
852
859
.
8.
Patil
,
V. R.
,
Kiener
,
F.
,
Grylka
,
A.
, and
Steinfeld
,
A.
,
2021
, “
Experimental Testing of a Solar Air Cavity-Receiver With Reticulated Porous Ceramic Absorbers for Thermal Processing at Above 1000 °C
,”
Sol. Energy
,
214
, pp.
72
85
.
9.
Avila-Marin
,
A. L.
,
Caliot
,
C.
,
Flamant
,
G.
,
Alvarez de Lara
,
M.
, and
Fernandez-Reche
,
J.
,
2018
, “
Numerical Determination of the Heat Transfer Coefficient for Volumetric Air Receivers With Wire Meshes
,”
Sol. Energy
,
162
, pp.
317
329
.
10.
Cagnoli
,
M.
,
Froio
,
A.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2019
, “
Multi-Scale Modular Analysis of Open Volumetric Receivers for Central Tower CSP Systems
,”
Sol. Energy
,
190
, pp.
195
211
.
11.
Reddy
,
K. S.
, and
Satyanarayana
,
G. V.
,
2008
, “
Numerical Study of Porous Finned Receiver for Solar Parabolic Trough Concentrator
,”
Eng. Appl. Comput. Fluid Mech.
,
2
(
2
), pp.
172
184
.
12.
Cantone
,
M.
,
Cagnoli
,
M.
,
Fernandez Reche
,
J.
, and
Savoldi
,
L.
,
2020
, “
One-Side Heating Test and Modeling of Tubular Receivers Equipped With Turbulence Promoters for Solar Tower Applications
,”
Appl. Energy
,
277
, p.
115519
.
13.
Ebadi
,
H.
,
Allio
,
A.
,
Cammi
,
A.
, and
Savoldi
,
L.
,
2021
, “
First Numerical Evaluation of the Thermal Performance of a Tubular Receiver Equipped With Raschig Rings for CSP Applications
,”
Proceedings of the ASME 2021 Power Conference. ASME 2021 Power Conference
,
Virtual, Online
,
July 20–22
,
ASME
, p.
V001T04A005
.
14.
Chamoli
,
S.
,
Chauhan
,
R.
,
Thakur
,
N. S.
, and
Saini
,
J. S.
,
2012
, “
A Review of the Performance of Double Pass Solar Air Heater
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
481
492
.
15.
Satcunanathan
,
S.
, and
Deonarine
,
S.
,
1973
, “
A Two-Pass Solar Air Heater
,”
Sol. Energy
,
15
(
1
), pp.
41
49
.
16.
Forson
,
F. K.
,
Nazha
,
M. A. A.
, and
Rajakaruna
,
H.
,
2003
, “
Experimental and Simulation Studies on a Single Pass, Double Duct Solar Air Heater
,”
Energy Convers. Manage.
,
44
(
8
), pp.
1209
1227
.
17.
Naphon
,
P.
,
2005
, “
Effect of Porous Media on the Performance of the Double-Pass Flat Plate Solar Air Heater
,”
Int. Commun. Heat mass Transfer
,
32
(
1–2
), pp.
140
150
.
18.
Sivarathinamoorthy
,
H.
, and
Sureshkannan
,
G.
,
2021
, “
The Influence of Internal Heat Storage Material and Longitudinal Fins on a Double-Pass Solar Air Heater Performance
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011004
.
19.
Yang
,
X.
,
Cai
,
Z.
, and
Luo
,
T.
,
2020
, “
A Special Type of Tube Receiver Unit for Solar Thermal Power Generation Towers
,”
Energy Rep.
,
6
, pp.
2841
2850
.
20.
Pérez-Álvarez
,
R.
,
Acosta-Iborra
,
A.
, and
Santana
,
D.
,
2020
, “
Thermal and Mechanical Stresses in Bayonet Tubes of Solar Central Receivers Working With Molten Salt and Liquid Sodium
,”
Results Eng.
,
5
, p.
100073
.
21.
Abd El-Hamid
,
M.
,
Wei
,
G.
,
Sherin
,
M.
,
Cui
,
L.
, and
Du
,
X.
,
2021
, “
Comparative Study of Different Photovoltaic/Thermal Hybrid Configurations From Energetic and Exergetic Points of View: A Numerical Analysis
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061006
.
22.
Shahsavar
,
A.
,
Ameri
,
M.
, and
Gholampour
,
M.
,
2012
, “
Energy and Exergy Analysis of a Photovoltaic-Thermal Collector With Natural Air Flow
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011014
.
23.
Ebadi
,
H.
,
Cammi
,
A.
, and
Savoldi
,
L.
, “
Investigation on a Double-Pass Tubular Absorber for Application in Solar Towers
,”
Proceedings of the ASME 2023 17th International Conference on Energy Sustainability Collocated With the ASME 2023 Heat Transfer Summer Conference. ASME 2023 17th International Conference on Energy Sustainability
,
Washington, DC
,
Jul. 10–12
,
ASME
, p.
V001T05A012
.
24.
Ebadi
,
H.
,
Cammi
,
A.
,
Difonzo
,
R.
,
Rodríguez
,
J.
, and
Savoldi
,
L.
,
2023
, “
Experimental Investigation on an Air Tubular Absorber Enhanced With Raschig Rings Porous Medium in a Solar Furnace
,”
Appl. Energy
,
342
, p.
121189
.
25.
Savoldi
,
L.
,
Allio
,
A.
,
Bovento
,
A.
,
Cantone
,
M.
, and
Fernandez Reche
,
J.
,
2020
, “
Experimental and Numerical Investigation of a Porous Receiver Equipped With Raschig Rings for CSP Applications
,”
Sol. Energy
,
212
, pp.
309
325
.
26.
Ho
,
C. K.
,
Mahoney
,
A. R.
,
Ambrosini
,
A.
,
Bencomo
,
M.
,
Hall
,
A.
, and
Lambert
,
T. N.
,
2012
, “
Characterization of Pyromark 2500 for High-Temperature Solar Receivers
,”
Proceedings of the ASME 2012 6th International Conference on Energy Sustainability Collocated With the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
,
San Diego, CA
,
Jul. 23–26
,
ASME
, pp.
509
518
.
27.
Li
,
B.
,
Oliveira
,
F. A. C.
,
Rodríguez
,
J.
,
Fernandes
,
J. C.
, and
Rosa
,
L. G.
,
2015
, “
Numerical and Experimental Study on Improving Temperature Uniformity of Solar Furnaces for Materials Processing
,”
Sol. Energy
,
115
, pp.
95
108
.
28.
Roldán
,
M. I.
, and
Monterreal
,
R.
,
2014
, “
Heat Flux and Temperature Prediction on a Volumetric Receiver Installed in a Solar Furnace
,”
Appl. Energy
,
120
, pp.
65
74
.
29.
Zhu
,
T. T.
,
Diao
,
Y. H.
,
Zhao
,
Y. H.
,
Wang
,
T. Y.
, and
Liu
,
J.
,
2017
, “
A Comparative Investigation of Two Types of MHPA Flat-Plate Solar Air Collector Based on Exergy Analysis
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051011
.
30.
Raam Dheep
,
G.
, and
Sreekumar
,
A.
,
2020
, “
Experimental Studies on Energy and Exergy Analysis of a Single-Pass Parallel Flow Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011003
.
31.
Zhu
,
J.
,
Wang
,
K.
,
Li
,
G.
,
Wu
,
H.
,
Jiang
,
Z.
,
Lin
,
F.
, and
Li
,
Y.
,
2016
, “
Experimental Study of the Energy and Exergy Performance for a Pressurized Volumetric Solar Receiver
,”
Appl. Therm. Eng.
,
104
, pp.
212
221
.
32.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
.
33.
Hedayatizadeh
,
M.
,
Sarhaddi
,
F.
,
Safavinejad
,
A.
,
Ranjbar
,
F.
, and
Chaji
,
H.
,
2016
, “
Exergy Loss-Based Efficiency Optimization of a Double-Pass/Glazed v-Corrugated Plate Solar Air Heater
,”
Energy
,
94
, pp.
799
810
.
34.
Farahat
,
S.
,
Sarhaddi
,
F.
, and
Ajam
,
H.
,
2009
, “
Exergetic Optimization of Flat Plate Solar Collectors
,”
Renewable Energy
,
34
(
4
), pp.
1169
1174
.
35.
Matheswaran
,
M. M.
,
Arjunan
,
T. V.
, and
Somasundaram
,
D.
,
2018
, “
Analytical Investigation of Solar Air Heater With Jet Impingement Using Energy and Exergy Analysis
,”
Sol. Energy
,
161
, pp.
25
37
.
36.
Chamoli
,
S.
, and
Thakur
,
N. S.
,
2014
, “
Exergetic Performance Evaluation of Solar Air Heater Having V-Down Perforated Baffles on the Absorber Plate
,”
J. Therm. Anal. Calorim.
,
117
(
2
), pp.
909
923
.
37.
Alzoubi
,
M. A.
, and
Sasmito
,
A. P.
,
2017
, “
Thermal Performance Optimization of a Bayonet Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
111
, pp.
232
247
.
38.
Inc. Siemens PLM Software
,
2021
, “
Siemens Digital Industries SoftwareSimcenter STAR-CCM + User Guide V2021.1
”, Siemens.
39.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Investigation of a Star Flow Insert in a Parabolic Trough Solar Collector
,”
Appl. Energy
,
224
, pp.
86
102
.
40.
Kumar
,
B. N.
, and
Reddy
,
K. S.
,
2020
, “
Numerical Investigations on Metal Foam Inserted Solar Parabolic Trough DSG Absorber Tube for Mitigating Thermal Gradients and Enhancing Heat Transfer
,”
Appl. Therm. Eng.
,
178
, pp.
115511
.
41.
Yılmaz
,
İH
,
Mwesigye
,
A.
, and
Göksu
,
T. T.
,
2020
, “
Enhancing the Overall Thermal Performance of a Large Aperture Parabolic Trough Solar Collector Using Wire Coil Inserts
,”
Sustain. Energy Technol. Assess.
,
39
, pp.
100696
.
42.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2014
, “
Heat Transfer and Thermodynamic Performance of a Parabolic Trough Receiver With Centrally Placed Perforated Plate Inserts
,”
Appl. Energy
,
136
, pp.
989
1003
.
43.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Thermal Enhancement of Parabolic Trough Collector With Internally Finned Absorbers
,”
Sol. Energy
,
157
, pp.
514
531
.
44.
Dixon
,
A. G.
,
Walls
,
G.
,
Stanness
,
H.
,
Nijemeisland
,
M.
, and
Stitt
,
E. H.
,
2012
, “
Experimental Validation of High Reynolds Number CFD Simulations of Heat Transfer in a Pilot-Scale Fixed Bed Tube
,”
Chem. Eng. J.
,
200–202
, pp.
344
356
.
45.
Moghaddam
,
E. M.
,
Foumeny
,
E. A.
,
Stankiewicz
,
A. I.
, and
Padding
,
J. T.
,
2021
, “
Heat Transfer From Wall to Dense Packing Structures of Spheres, Cylinders and Raschig Rings
,”
Chem. Eng. J.
,
407
, pp.
127994
.
46.
Dong
,
Y.
,
Sosna
,
B.
,
Korup
,
O.
,
Rosowski
,
F.
, and
Horn
,
R.
,
2017
, “
Investigation of Radial Heat Transfer in a Fixed-Bed Reactor: CFD Simulations and Profile Measurements
,”
Chem. Eng. J.
,
317
, pp.
204
214
.
47.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New K-ɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
48.
Soe
,
T. M.
, and
Khaing
,
S. Y.
,
2017
, “
Comparison of Turbulence Models for Computational Fluid Dynamics Simulation of Wind Flow on Cluster of Buildings in Mandalay
,”
Int. J. Sci. Res. Publ.
,
7
(
8
), pp.
337
350
.
You do not currently have access to this content.