Abstract

Particle-based thermochemical energy storage (TCES) through metal oxide redox cycling is advantageous compared to traditional sensible and latent heat storage (SHS and LHS) due to its higher operating temperature and energy density, and the capability for long-duration storage. However, overall system performance also depends on the efficiency of the particle-to-working fluid heat exchangers (HXs). Moving packed-bed particle-to-supercritical CO2 (sCO2) HXs have been extensively studied in SHS systems. Integrating the oxidation reactor (OR) for discharging with a particle-to-sCO2 HX is a natural choice, for which detailed analysis is needed for OR/HX design and operation. In this work, a 2D continuum heat and mass transfer model coupling transport phenomena and reaction kinetics is developed for a shell-and-plate moving-bed OR/HX. For the baseline design, the model predicted ∼75% particle bed extent of oxidation at the channel exit, yielding a total heat transfer rate of 16.71 kW for 1.0 m2 heat transfer area per channel, while the same design with inert particles (SHS only) gives only 4.62 kW. A parametric study was also conducted to evaluate the effects of particle, air, and sCO2 flowrates, channel height and width, and average particle diameters. It is found that the respective heat transfer rate and sCO2 outlet temperature can approach ∼25 kW and >1000 °C for optimized designs for the OR/HX. The present model will be valuable for further OR/HX design, scale-up, and optimization of operating conditions.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Olabi
,
A. G.
, and
Abdelkareem
,
M. A.
,
2022
, “
Renewable Energy and Climate Change
,”
Renewable Sustainable Energy Rev.
,
158
, p.
112111
.
2.
Ozeh
,
M.
,
Mishra
,
A.
, and
Wang
,
X.
,
2018
, “
Mini Wind Turbine for Small Scale Power Generation and Storage (Archimedes Wind Turbine Model)
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
Pittsburgh, PA
,
Nov. 9–15
, Vol.
6B-2018
, p.
V06BT08A043
.
3.
Elavarasan
,
R. M.
,
2020
, “
Comprehensive Review on India's Growth in Renewable Energy Technologies in Comparison With Other Prominent Renewable Energy Based Countries
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
030801
.
4.
Carneiro
,
T. C.
,
de Carvalho
,
P. C. M.
,
Alves dos Santos
,
H.
,
Lima
,
M. A. F. B.
, and
Braga
,
A. P. d. S.
,
2022
, “
Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010801
.
5.
Kerskes
,
H.
,
2016
, “Thermochemical Energy Storage,”
Storing Energy
,
T. M.
Letcher
, ed.,
Elsevier
,
New York
, pp.
345
372
.
6.
Mayyas
,
A.
,
Chadly
,
A.
,
Amer
,
S. T.
, and
Azar
,
E.
,
2022
, “
Economics of the Li-Ion Batteries and Reversible Fuel Cells as Energy Storage Systems When Coupled With Dynamic Electricity Pricing Schemes
,”
Energy
,
239
, p.
121941
.
7.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “
Concentrating Solar Power Gen3 Demonstration Roadmap
,” Golden, CO, Technical Report.
8.
Ho
,
C. K.
,
Carlson
,
M.
,
Albrecht
,
K. J.
,
Ma
,
Z.
,
Jeter
,
S.
, and
Nguyen
,
C. M.
,
2019
, “
Evaluation of Alternative Designs for a High Temperature Particle-to-sCO2 Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021001
.
9.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
.
10.
Bayon
,
A.
,
Carrillo
,
A. J.
,
Mastronardo
,
E.
, and
Coronado
,
J. M.
,
2021
, “Chapter Six: Thermochemical Heat Storage at High Temperature,”
Book: Advances in Chemical Engineering
, Vol.
58
,
Elsevier
,
San Diego, CA
, pp.
247
295
.
11.
Lei
,
F.
,
Dyall
,
A.
, and
AuYeung
,
N.
,
2021
, “
An In-Depth Investigation of BaO2/BaO Redox Oxides for Reversible Solar Thermochemical Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
223
, p.
110957
.
12.
André
,
L.
, and
Abanades
,
S.
,
2017
, “
Evaluation and Performances Comparison of Calcium, Strontium and Barium Carbonates During Calcination/Carbonation Reactions for Solar Thermochemical Energy Storage
,”
J. Energy Storage
,
13
, pp.
193
205
.
13.
Pardo
,
P.
,
Deydier
,
A.
,
Anxionnaz-Minvielle
,
Z.
,
Rougé
,
S.
,
Cabassud
,
M.
, and
Cognet
,
P.
,
2014
, “
A Review on High Temperature Thermochemical Heat Energy Storage
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
591
610
.
14.
Korba
,
D.
,
Mishra
,
A.
,
El Amrani
,
M.
,
Randhir
,
K.
,
Rahmatian
,
N.
,
Klausner
,
J. F.
,
AuYeung
,
N.
, and
Li
,
L.
,
2023
, “
Tomography-Based Pore-Scale Model and Prediction of Flow and Thermal Transport Properties for Thermochemical Energy Storage Materials
,”
Proceeding of 8th Thermal and Fluids Engineering Conference (TFEC)
,
College Park, MD
,
Mar. 26–29
, Begellhouse, CT, pp.
1549
1560
.
15.
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Kharait
,
R.
,
Sanders
,
M. D.
, and
Jackson
,
G. S.
,
2018
, “
Redox Cycles With Doped Calcium Manganites for Thermochemical Energy Storage to 1000 °C
,”
Appl. Energy
,
230
, pp.
1
18
.
16.
Randhir
,
K.
,
King
,
K.
,
Rhodes
,
N.
,
Li
,
L.
,
Hahn
,
D.
,
Mei
,
R.
,
AuYeung
,
N.
, and
Klausner
,
J.
,
2019
, “
Magnesium-Manganese Oxides for High Temperature Thermochemical Energy Storage
,”
J. Energy Storage
,
21
, pp.
599
610
.
17.
King
,
K.
,
Randhir
,
K.
, and
Klausner
,
J.
,
2019
, “
Calorimetric Method for Determining the Thermochemical Energy Storage Capacities of Redox Metal Oxides
,”
Thermochim. Acta
,
673
, pp.
105
118
.
18.
Rahmatian
,
N.
,
Bo
,
A.
,
Randhir
,
K.
,
Klausner
,
J. F.
, and
Petrasch
,
J.
,
2022
, “
Bench-Scale Demonstration of Thermochemical Energy Storage Using the Magnesium-Manganese-Oxide Redox System
,”
J. Energy Storage
,
45
, p.
103682
.
19.
Bo
,
A.
,
Randhir
,
K.
,
Rahmatian
,
N.
,
Klausner
,
J.
, and
Petrasch
,
J.
,
2022
, “
Chemical Equilibrium of the Magnesium Manganese Oxide Redox System for Thermochemical Energy Storage
,”
Chem. Eng. Sci.
,
259
, p.
117750
.
20.
Karagiannakis
,
G.
,
Pagkoura
,
C.
,
Halevas
,
E.
,
Baltzopoulou
,
P.
, and
Konstandopoulos
,
A. G.
,
2016
, “
Cobalt/Cobaltous Oxide Based Honeycombs for Thermochemical Heat Storage in Future Concentrated Solar Power Installations: Multi-Cyclic Assessment and Semi-Quantitative Heat Effects Estimations
,”
Sol. Energy
,
133
, pp.
394
407
.
21.
Carrillo
,
A. J.
,
Sastre
,
D.
,
Serrano
,
D. P.
,
Pizarro
,
P.
, and
Coronado
,
J. M.
,
2016
, “
Revisiting the BaO 2/BaO Redox Cycle for Solar Thermochemical Energy Storage
,”
Phys. Chem. Chem. Phys.
,
18
(
11
), pp.
8039
8048
.
22.
Wokon
,
M.
,
Kohzer
,
A.
, and
Linder
,
M.
,
2017
, “
Investigations on Thermochemical Energy Storage Based on Technical Grade Manganese-Iron Oxide in a Lab-Scale Packed bed Reactor
,”
Sol. Energy
,
153
, pp.
200
214
.
23.
Wang
,
B.
,
Li
,
L.
,
Schäfer
,
F.
,
Pottas
,
J. J.
,
Kumar
,
A.
,
Wheeler
,
V. M.
, and
Lipiński
,
W.
,
2021
, “
Thermal Reduction of Iron–Manganese Oxide Particles in a High-Temperature Packed-Bed Solar Thermochemical Reactor
,”
Chem. Eng. J.
,
412
, p.
128255
.
24.
Singh
,
A.
,
Tescari
,
S.
,
Lantin
,
G.
,
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Solar Thermochemical Heat Storage Via the Co3O4/CoO Looping Cycle: Storage Reactor Modelling and Experimental Validation
,”
Sol. Energy
,
144
, pp.
453
465
.
25.
Jackson
,
G. S.
,
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Miller
,
D. C.
, and
Braun
,
R. J.
,
2019
, “
Inert and Reactive Oxide Particles for High-Temperature Thermal Energy Capture and Storage for Concentrating Solar Power
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021016
.
26.
Preisner
,
N. C.
,
Bürger
,
I.
,
Wokon
,
M.
, and
Linder
,
M.
,
2020
, “
Numerical Investigations of a Counter-Current Moving Bed Reactor for Thermochemical Energy Storage at High Temperatures
,”
Energies
,
13
(
3
), p.
772
.
27.
Randhir
,
K.
,
Hayes
,
M.
,
Schimmels
,
P.
,
Petrasch
,
J.
, and
Klausner
,
J.
,
2022
, “
Zero Carbon Solid-State Rechargeable Redox Fuel for Long Duration and Seasonal Storage
,”
Joule
,
6
(
11
), pp.
2513
2534
.
28.
Huang
,
W.
,
Korba
,
D.
,
Randhir
,
K.
,
Petrasch
,
J.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2022
, “
Thermochemical Reduction Modeling in a High-Temperature Moving-Bed Reactor for Energy Storage: 1D Model
,”
Appl. Energy
,
306
, p.
118009
.
29.
Korba
,
D.
,
Huang
,
W.
,
Randhir
,
K.
,
Petrasch
,
J.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2022
, “
A Continuum Model for Heat and Mass Transfer in Moving-Bed Reactors for Thermochemical Energy Storage
,”
Appl. Energy
,
313
, p.
118842
.
30.
Hayes
,
M.
,
Korba
,
D.
,
Schimmels
,
P.
,
Klausner
,
J.
,
Petrasch
,
J.
,
AuYeung
,
N.
,
Li
,
L.
, and
Randhir
,
K.
,
2023
, “
Experimental Demonstration of High-Temperature (>1000
°C) Heat Extraction From a Moving-Bed Oxidation Reactor for Thermochemical Energy Storage
,”
Appl. Energy
,
349
, p.
121625
.
31.
Korba
,
D.
,
Hayes
,
M.
,
Schimmels
,
P.
,
Randhir
,
K.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2024
, “
Continuum Modeling of High-Temperature (>1000 °C) Heat Extraction From a Moving-bed Oxidation Reactor for Thermochemical Energy Storage
,”
J. Energy Storage
,
82
, p.
110579
.
32.
Caccia
,
M.
,
Tabandeh-Khorshid
,
M.
,
Itskos
,
G.
,
Strayer
,
A. R.
,
Caldwell
,
A. S.
,
Pidaparti
,
S.
,
Singnisai
,
S.
, et al
,
2018
, “
Ceramic–Metal Composites for Heat Exchangers in Concentrated Solar Power Plants
,”
Nature
,
562
(
7727
), pp.
406
409
.
33.
Li
,
X.
,
Wilson
,
C. T.
,
Zhang
,
L.
,
Bhatia
,
B.
,
Zhao
,
L.
,
Leroy
,
A.
,
Brandt
,
O.
, et al
,
2022
, “
Design and Modeling of a Multiscale Porous Ceramic Heat Exchanger for High Temperature Applications With Ultrahigh Power Density
,”
Int. J. Heat Mass Transfer
,
194
, p.
122996
.
34.
Bader
,
R.
,
Bala Chandran
,
R.
,
Venstrom
,
L. J.
,
Sedler
,
S. J.
,
Krenzke
,
P. T.
,
De Smith
,
R. M.
,
Banerjee
,
A.
,
Chase
,
T. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2015
, “
Design of a Solar Reactor to Split CO2 via Isothermal Redox Cycling of Ceria
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031007
.
35.
Aider
,
Y.
,
Kaur
,
I.
,
Mishra
,
A.
,
Li
,
L.
,
Cho
,
H.
,
Martinek
,
J.
,
Ma
,
Z.
, and
Singh
,
P.
,
2023
, “
Heat Transfer Characteristics of Particle and Air Flow Through Additively Manufactured Lattice Frame Material Based on Octet-Shape Topology
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
061004
.
36.
Aider
,
Y.
,
Mishra
,
A.
,
Li
,
L.
,
Cho
,
H.
, and
Singh
,
P.
,
2022
, “
Heat Transfer Characteristics of Particle Flow Through Additively Manufactured (SS 316L) Lattice Frame Material Based on Octet-Shape Topology
,”
Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering
,
American Society of Mechanical Engineers
,
Columbus, OH
,
Oct. 30–Nov. 3
, p.
V008T11A046
.
37.
Albrecht
,
K. J.
,
Bauer
,
M. L.
, and
Ho
,
C. K.
,
2019
, “
Parametric Analysis of Particle CSP System Performance and Cost to Intrinsic Particle Properties and Operating Conditions
,”
ASME 2019 13th International Conference on Energy Sustainability
,
American Society of Mechanical Engineers
,
Bellevue, WA
,
July 14–17
, p.
V001T03A006
.
38.
Ho
,
C. K.
,
Albrecht
,
K. J.
,
Yue
,
L.
,
Mills
,
B.
,
Sment
,
J.
,
Christian
,
J.
, and
Carlson
,
M.
,
2020
, “
Overview and Design Basis for the Gen 3 Particle Pilot Plant (G3P3)
,”
SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems
,
Daegu, South Korea
,
Oct. 1–4
.
39.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2018
, “
Heat Transfer Models of Moving Packed-Bed Particle-to-sCO2 Heat Exchangers
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031006
.
40.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2019
, “
Design and Operating Considerations for a Shell-and-Plate, Moving Packed-Bed, Particle-to-sCO2 Heat Exchanger
,”
Sol. Energy
,
178
, pp.
331
340
.
41.
Fang
,
W.
,
Chen
,
S.
,
Xu
,
J.
, and
Zeng
,
K.
,
2021
, “
Predicting Heat Transfer Coefficient of a Shell-and-Plate, Moving Packed-Bed Particle-to-sCO2 Heat Exchanger for Concentrating Solar Power
,”
Energy
,
217
, p.
119389
.
42.
Anantharaman
,
A.
,
Cocco
,
R. A.
, and
Chew
,
J. W.
,
2018
, “
Evaluation of Correlations for Minimum Fluidization Velocity (U) in Gas-Solid Fluidization
,”
Powder Technol.
,
323
, pp.
454
485
.
43.
Bird
,
R. B.
,
2002
, “
Transport Phenomena
,”
ASME Appl. Mech. Rev.
,
55
(
1
), pp.
R1
R4
.
44.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic Press
,
San Diego, CA
.
45.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
467
476
.
46.
Botterill
,
J. S. M.
, and
Denloye
,
A. O. O.
,
1978
, “
A Theoretical Model of Heat Transfer to a Packed or Quiescent Fluidized Bed
,”
Chem. Eng. Sci.
,
33
(
4
), pp.
509
515
.
47.
Denloye
,
A. O. O.
, and
Botterill
,
J. S. M.
,
1977
, “
Heat Transfer in Flowing Packed Beds
,”
Chem. Eng. Sci.
,
32
(
5
), pp.
461
465
.
48.
Yagi
,
S.
, and
Kunii
,
D.
,
1957
, “
Studies on Effective Thermal Conductivities in Packed Beds
,”
AIChE J.
,
3
(
3
), pp.
373
381
.
49.
Huang
,
W.
,
Million
,
E.
,
Randhir
,
K.
,
Petrasch
,
J.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2021
, “
Heat Transfer Modeling in a Counter-Current Moving-Bed Tubular Reactor for High-Temperature Thermochemical Energy Storage
,”
ASME 2021 15th International Conference on Energy Sustainability
,
Virtual
,
June 16–18
.
50.
Hayes
,
M.
,
Masoomi
,
F.
,
Schimmels
,
P.
,
Randhir
,
K.
,
Klausner
,
J.
, and
Petrasch
,
J.
,
2021
, “
Ultra-High Temperature Thermal Conductivity Measurements of a Reactive Magnesium Manganese Oxide Porous Bed Using a Transient Hot Wire Method
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
104502
.
51.
Vesovic
,
V.
,
Wakeham
,
W. A.
,
Olchowy
,
G. A.
,
Sengers
,
J. V.
,
Watson
,
J. T. R.
, and
Millat
,
J.
,
1990
, “
The Transport Properties of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
19
(
3
), pp.
763
808
.
52.
Fernández-Torrijos
,
M.
,
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2018
, “
Dynamic Modeling of a Particle/Supercritical CO2 Heat Exchanger for Transient Analysis and Control
,”
Appl. Energy
,
226
, pp.
595
606
.
53.
Yin
,
J.-M.
,
Zheng
,
Q.-Y.
, and
Zhang
,
X.-R.
,
2020
, “
Heat Transfer Model of a Particle Energy Storage-Based Moving Packed bed Heat Exchanger
,”
Energy Storage
,
2
(
1
), p.
e113
.
54.
Miller
,
D. C.
,
Pfutzner
,
C. J.
, and
Jackson
,
G. S.
,
2018
, “
Heat Transfer in Counterflow Fluidized Bed of Oxide Particles for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
126
, pp.
730
745
.
55.
Chung
,
K. M.
,
Zeng
,
J.
,
Adapa
,
S. R.
,
Feng
,
T.
,
Bagepalli
,
M. V.
,
Loutzenhiser
,
P. G.
,
Albrecht
,
K. J.
,
Ho
,
C. K.
, and
Chen
,
R.
,
2021
, “
Measurement and Analysis of Thermal Conductivity of Ceramic Particle Beds for Solar Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
230
, p.
111271
.
56.
Bagepalli
,
M. V.
,
Yarrington
,
J. D.
,
Schrader
,
A. J.
,
Zhang
,
Z. M.
,
Ranjan
,
D.
, and
Loutzenhiser
,
P. G.
,
2020
, “
Measurement of Flow Properties Coupled to Experimental and Numerical Analyses of Dense, Granular Flows for Solar Thermal Energy Storage
,”
Sol. Energy
,
207
, pp.
77
90
.
You do not currently have access to this content.