Abstract

The objective of this paper is to assess the techno-economic performance of different cycle configurations for pumped thermal energy storage (PTES), including the effects of charging electricity costs. Reversible turbomachinery was employed to reduce the capital cost of the system. Brayton cycles with different working fluids and a subcritical Rankine cycle operating with ammonia were compared. Both liquid and packed bed thermal storages were investigated. A new cost correlation for turbomachines, initially established for the turbines of organic Rankine cycles, was developed for compressors and reversible machines. This correlation is based on the number of stages and physical size of the machine, which were estimated considering thermodynamic as well as mechanical limitations. The results indicate that for a plant size of 50 MW and a discharge duration of 8 h, the Brayton system with liquid storage and helium as a working fluid has the lowest levelized cost of storage at 0.138 $/kWh, mainly due to the high thermal conductivity of the fluid. Packed bed thermal energy storage systems were found to be more expensive than liquid storage systems due to the large cost of the pressure vessels, with cost parity reached at a discharge duration of 4 h. However, at this duration, lithium-ion batteries are likely to be cheaper. The results suggest that the levelized cost of storage for the Rankine cycle-based system is slightly higher at 0.151 $/kWh.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
IEA
,
2022
,
World Energy Outlook 2022
,
IEA
,
Paris
.
2.
Gautam
,
K. R.
,
Andresen
,
G. B.
, and
Victoria
,
M.
,
2022
, “
Review and Techno-Economic Analysis of Emerging Thermo-Mechanical Energy Storage Technologies
,”
Energies
,
15
(
17
), p.
6328
.
3.
Olympios
,
A. V.
,
McTigue
,
J. D.
,
Farres-Antunez
,
P.
,
Tafone
,
A.
,
Romagnoli
,
A.
,
Li
,
Y.
,
Ding
,
Y.
, et al
,
2021
, “
Progress and Prospects of Thermo-Mechanical Energy Storage – A Critical Review
,”
Prog. Energy
,
3
(
2
), p.
022001
.
4.
Worku
,
M. Y.
,
2022
, “
Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review
,”
Sustainability
,
14
(
10
), p.
5985
.
5.
Vecchi
,
A.
, and
Sciacovelli
,
A.
,
2023
, “
Long-Duration Thermo-Mechanical Energy Storage – Present and Future Techno-Economic Competitiveness
,”
Appl. Energy
,
334
, p.
120628
.
6.
Mongird
,
K.
,
Viswanathan
,
V. V.
,
Balducci
,
P. J.
,
Alam
,
M. J. E.
,
Fotedar
,
V.
,
Koritarov
,
V. S.
, and
Hadjerioua
,
B.
,
2019
, “Energy Storage Technology and Cost Characterization Report,” No. PNNL-28866, Pacific Northwest National Laboratory (PNNL), Richland, WA.
7.
Tomaschek
,
K.
,
Olechowski
,
A.
,
Eppinger
,
S.
, and
Joglekar
,
N.
,
2016
, “
A Survey of Technology Readiness Level Users
,”
INCOSE International Symposium
,
Edinburgh, Scotland, UK
,
July 18–21
.
8.
Smith
,
N. R.
,
Just
,
J.
,
Johnson
,
J.
, and
Karg-Bulnes
,
F.
,
2023
, “
Performance Characterization of a Small-Scale Pumped Thermal Energy Storage System
,”
Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 6: Education; Electric Power; Energy Storage; Fans and Blowers
,
Boston, MA
,
ASME
, p.
V006T09A012
.
9.
Ameen
,
M. T.
,
Ma
,
Z.
,
Smallbone
,
A.
,
Norman
,
R.
, and
Roskilly
,
A. P.
,
2023
, “
Demonstration System of Pumped Heat Energy Storage (PHES) and Its Round-Trip Efficiency
,”
Appl. Energy
,
333
, p.
120580
.
10.
Ma
,
Z.
,
Wang
,
X.
,
Davenport
,
P.
,
Gifford
,
J.
, and
Martinek
,
J.
,
2022
, “
Preliminary Component Design and Cost Estimation of a Novel Electric-Thermal Energy Storage System Using Solid Particles
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
030901
.
11.
Rehman
,
S.
,
Al-Hadhrami
,
L. M.
, and
Alam
,
M. M.
,
2015
, “
Pumped Hydro Energy Storage System: A Technological Review
,”
Renewable Sustainable Energy Rev.
,
44
, pp.
586
598
.
12.
Harris
,
P.
,
Wolf
,
T.
,
Kesseli
,
J.
, and
Laughlin
,
R. B.
,
2020
, “
An Investigation of Reversing Axial Turbomachinery for Thermal Energy Storage Application
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 5: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage
,
ASME
, p.
V005T07A003
.
13.
Chiapperi
,
J. D.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2023
, “
Attributes of Bi-Directional Turbomachinery for Pumped Thermal Energy Storage
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 10A: Turbomachinery – Axial Flow Fan and Compressor Aerodynamics
,
Rotterdam, The Netherlands
,
ASME
, p.
V10AT29A012
.
14.
Parisi
,
S.
, and
Haglind
,
F.
,
2023
, “
Numerical Analysis of Reversible Radial-Flow Turbomachinery for Energy Storage Applications
,”
Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 6: Education; Electric Power; Energy Storage; Fans and Blowers
,
Boston, MA
,
ASME
, p.
V006T09A002
.
15.
Zhao
,
Y.
,
Song
,
J.
,
Liu
,
M.
,
Zhao
,
Y.
,
Olympios
,
A. V.
,
Sapin
,
P.
,
Yan
,
J.
, and
Markides
,
C. N.
,
2022
, “
Thermo-Economic Assessments of Pumped-Thermal Electricity Storage Systems Employing Sensible Heat Storage Materials
,”
Renewable Energy
,
186
, pp.
431
456
.
16.
Frate
,
G. F.
,
Pettinari
,
M.
,
Di Pino Incognito
,
E.
,
Costanzi
,
R.
, and
Ferrari
,
L.
, “
Dynamic Modelling of a Brayton PTES System
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 4: Cycle Innovations; Cycle Innovations: Energy Storage
,
Rotterdam, The Netherlands
,
ASME
, p.
V004T07A013
.
17.
McTigue
,
J. D.
,
Farres-Antunez
,
P.
,
Ellingwood
,
K.
,
Neises
,
T.
, and
White
,
A.
,
2020
, “
Pumped Thermal Electricity Storage With Supercritical CO2 Cycles and Solar Heat Input
,”
AIP Conf. Proc.
,
2303
(
1
), p.
190024
.
18.
Klasing
,
F.
,
Hirsch
,
T.
,
Odenthal
,
C.
, and
Bauer
,
T.
,
2020
, “
Techno-Economic Optimization of Molten Salt Concentrating Solar Power Parabolic Trough Plants With Packed-Bed Thermocline Tanks
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051006
.
19.
McTigue
,
J. D.
,
Farres-Antunez
,
P.
,
Sundarnath
,
K.
,
Markides
,
C. N.
, and
White
,
A. J.
,
2022
, “
Techno-Economic Analysis of Recuperated Joule-Brayton Pumped Thermal Energy Storage
,”
Energy Convers. Manage.
,
252
, p.
115016
.
20.
Frate
,
G. F.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2022
, “
Techno-Economic Comparison of Brayton Pumped Thermal Electricity Storage (PTES) Systems Based on Solid and Liquid Sensible Heat Storage
,”
Energies
,
15
(
24
), p.
9595
.
21.
Zhang
,
H.
,
Wang
,
L.
,
Lin
,
X.
, and
Chen
,
H.
,
2023
, “
Parametric Optimisation and Thermo-Economic Analysis of Joule–Brayton Cycle-Based Pumped Thermal Electricity Storage System Under Various Charging–Discharging Periods
,”
Energy
,
263
(
E
), p.
125908
.
22.
Morandin
,
M.
,
Mercangöz
,
M.
,
Hemrle
,
J.
,
Maréchal
,
F.
, and
Favrat
,
D.
,
2013
, “
Thermoeconomic Design Optimization of a Thermo-Electric Energy Storage System Based on Transcritical CO2 Cycles
,”
Energy
,
58
, pp.
571
587
.
23.
Agazzani
,
A.
, and
Massardo
,
A. F.
,
1997
, “
A Tool for Thermoeconomic Analysis and Optimization of Gas, Steam, and Combined Plants
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
885
892
.
24.
Aungier
,
R. H.
,
2003
,
Axial-Flow Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
New York
.
25.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2012
, “
Performance Limits of Axial Compressor Stages
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 8: Turbomachinery, Parts A, B, and C
,
Copenhagen, Denmark
,
June 11–15
, ASME, pp.
479
489
.
26.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2014
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 7th ed.,
Elsevier Inc.
,
Oxford, UK
.
27.
Cohen
,
R.
,
Gilroy
,
W. K.
, and
Marchant
,
R. D.
,
1967
, “Compressor Research Package for Research and Development of High Performance Axial-Flow Turbomachinery Final Report,” Report No. NASA-CR-54884. https://ntrs.nasa.gov/citations/19670014012
28.
Astolfi
,
M.
,
Romano
,
M. C.
,
Bombarda
,
P.
, and
Macchi
,
E.
,
2014
, “
Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium-Low Temperature Geothermal Sources – Part B: Techno-Economic Optimization
,”
Energy
,
66
, pp.
435
446
.
29.
Turan
,
O.
, and
Aydin
,
H.
,
2014
, “
Exergetic and Exergo-Economic Analyses of an Aero-Derivative Gas Turbine Engine
,”
Energy
,
74
(
C
), pp.
638
650
.
30.
Turton
,
R.
,
Bailie
,
R. C.
,
Whiting
,
W. B.
, and
Shaeiwitz
,
J. A.
,
2013
,
Analysis, Synthesis, and Design of Chemical Processes
, 4th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
31.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2017
,
Incropera's Principles of Heat and Mass Transfer
,
John Wiley & Sons
,
Singapore
.
32.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
33.
The MathWorks, Inc.
,
2022
, “Optimization Toolbox Version 9.2.” https://www.mathworks.com
34.
Georgiou
,
S.
,
Nilay
,
S.
, and
Christos
,
N. M.
,
2018
, “
A Thermo-Economic Analysis and Comparison of Pumped-Thermal and Liquid-Air Electricity Storage Systems
,”
Appl. Energy
,
226
, pp.
1119
1133
.
You do not currently have access to this content.