Abstract

Moving packed-bed heat exchangers in concentrated solar power (CSP) plants involves heat transfer between heated falling particles and supercritical carbon dioxide. The overall effective thermal conductivity of the moving packed bed and particle-side channel contact resistances are still the bottlenecks in achieving the desirable thermal transport levels. To this end, a novel moving packed bed heat exchanger consisting of an Octet lattice packed between the walls of the particle-side channel is proposed in this study. Granular flow analysis in Octet lattice moving packed bed heat exchanger (OLHX) was conducted through experiments and discrete element method (DEM)-based numerical simulations. The experimental images clearly demonstrated stagnation regions upstream of lattice fibers, void regions downstream of the fiber junctions, and wavy-type unobstructed flow on the lateral sides of the fibers. DEM simulations were successful in capturing all these critical flow phenomena. Larger flow velocities were observed on the lateral sides of the fibers in the simulations. Also, when the particles in the silo were emptied, the final images showed an accumulation of particles on the inter-fiber as well as fiber–channel wall junctions. Moreover, the fiber connections resulted in some regions devoid of particle contact on the channel endwall, which means that these regions would suffer from poor thermal exchange. The overall mass flowrate increased with increasing porosity for a fixed particle diameter.

References

1.
Montes
,
M. J.
,
Linares
,
J. I.
,
Barbero
,
R.
, and
Moratilla
,
B. Y.
,
2020
, “
Optimization of a New Design of Molten Salt-to-CO2 Heat Exchanger Using Exergy Destruction Minimization
,”
Entropy
,
22
(
8
), p.
883
.
2.
Mehos
,
M.
,
Turch
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “Concentrating Solar Power Gen3 Demonstration Roadmap (No. NREL/TP-5500-67464),” National Renewable Energy Lab.(NREL), Golden, CO.
3.
Du
,
B. C.
,
He
,
Y. L.
,
Qiu
,
Y.
,
Liang
,
Q.
, and
Zhou
,
Y. P.
,
2018
, “
Investigation on Heat Transfer Characteristics of Molten Salt in a Shell-and-Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
96
, pp.
61
68
.
4.
He
,
Y. L.
,
Zheng
,
Z. J.
,
Du
,
B. C.
,
Wang
,
K.
, and
Qiu
,
Y.
,
2016
, “
Experimental Investigation on Turbulent Heat Transfer Characteristics of Molten Salt in a Shell-and-Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
108
, pp.
1206
1213
.
5.
Qian
,
J.
,
Kong
,
Q. L.
,
Zhang
,
H. W.
,
Zhu
,
Z. H.
,
Huang
,
W. G.
, and
Li
,
W. H.
,
2017
, “
Experimental Study for Shell-and-Tube Molten Salt Heat Exchangers
,”
Appl. Therm. Eng.
,
124
, pp.
616
623
.
6.
Huang
,
C.
,
Cai
,
W.
,
Wang
,
Y.
,
Liu
,
Y.
,
Li
,
Q.
, and
Li
,
B.
,
2019
, “
Review on the Characteristics of Flow and Heat Transfer in Printed Circuit Heat Exchangers
,”
Appl. Therm. Eng.
,
153
, pp.
190
205
.
7.
Wang
,
W. Q.
,
Qiu
,
Y.
,
He
,
Y. L.
, and
Shi
,
H. Y.
,
2019
, “
Experimental Study on the Heat Transfer Performance of a Molten-Salt Printed Circuit Heat Exchanger With Airfoil Fins for Concentrating Solar Power
,”
Int. J. Heat Mass Transfer
,
135
, pp.
837
846
.
8.
Nikitin
,
K.
,
Kato
,
Y.
, and
Ngo
,
L.
,
2006
, “
Printed Circuit Heat Exchanger Thermal–Hydraulic Performance in Supercritical CO2 Experimental Loop
,”
Int. J. Refrig.
,
29
(
5
), pp.
807
814
.
9.
Encinas-Sánchez
,
V.
,
Lasanta
,
M. I.
,
De Miguel
,
M. T.
,
García-Martín
,
G.
, and
Pérez
,
F. J.
,
2021
, “
Corrosion Monitoring of 321H in Contact With a Quaternary Molten Salt for Parabolic Trough CSP Plants
,”
Corros. Sci.
,
178
, p.
109070
.
10.
Tian
,
X.
,
Yang
,
J.
,
Guo
,
Z.
,
Wang
,
Q.
, and
Sunden
,
B.
,
2020
, “
Numerical Study of Heat Transfer in Gravity-Driven Dense Particle Flow Around a Hexagonal Tube
,”
Powder Technol.
,
367
, pp.
285
295
.
11.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2019
, “
Heat Transfer Models of Moving Packed-Bed Particle-to-sCO2 Heat Exchangers
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031006
.
12.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2019
, “
Design and Operating Considerations for a Shell-and-Plate, Moving Packed-Bed, Particle-to-sCO2 Heat Exchanger
,”
Sol. Energy
,
178
, pp.
331
340
.
13.
Baumann
,
T.
, and
Zunft
,
S.
,
2015
, “
Development and Performance Assessment of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants
,”
Energy Procedia
,
69
, pp.
748
757
.
14.
Tian
,
X.
,
Guo
,
Z.
,
Jia
,
H.
,
Yang
,
J.
, and
Wang
,
Q.
,
2021
, “
Numerical Investigation of a New Type Tube for Shell-and-Tube Moving Packed Bed Heat Exchanger
,”
Powder Technol.
,
394
, pp.
584
596
.
15.
Tian
,
X.
,
Zhu
,
F.
,
Guo
,
Z.
,
Zhang
,
J.
,
Yang
,
J.
, and
Wang
,
Q.
,
2022
, “
Numerical Investigation of Gravity-Driven Particle Flow Along the Trapezoidal Corrugated Plate for a Moving Packed bed Heat Exchanger
,”
Powder Technol.
,
405
, p.
117526
.
16.
Guo
,
Z.
,
Yang
,
J.
,
Tan
,
Z.
,
Tian
,
X.
, and
Wang
,
Q.
,
2021
, “
Numerical Study on Gravity-Driven Granular Flow Around Tube Out-Wall: Effect of Tube Inclination on the Heat Transfer
,”
Int. J. Heat Mass Transfer
,
174
, p.
121296
.
17.
Cundall
,
P. A.
, and
Strack
,
O. D.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
18.
Bartsch
,
P.
, and
Zunft
,
S.
,
2019
, “
Granular Flow Around the Horizontal Tubes of a Particle Heat Exchanger: DEM-Simulation and Experimental Validation
,”
Sol. Energy
,
182
, pp.
48
56
.
19.
Yarrington
,
J. D.
,
Bagepalli
,
M. V.
,
Pathikonda
,
G.
,
Schrader
,
A. J.
,
Zhang
,
Z. M.
,
Ranjan
,
D.
, and
Loutzenhiser
,
P. G.
,
2021
, “
Numerical Analyses of High Temperature Dense, Granular Flows Coupled to High Temperature Flow Property Measurements for Solar Thermal Energy Storage
,”
Sol. Energy
,
213
, pp.
350
360
.
20.
Soni
,
R. K.
,
Mohanty
,
R.
,
Mohanty
,
S.
, and
Mishra
,
B. K.
,
2016
, “
Numerical Analysis of Mixing of Particles in Drum Mixers Using DEM
,”
Adv. Powder Technol.
,
27
(
2
), pp.
531
540
.
21.
Liu
,
P. Y.
,
Yang
,
R. Y.
, and
Yu
,
A. B.
,
2013
, “
DEM Study of the Transverse Mixing of Wet Particles in Rotating Drums
,”
Chem. Eng. Sci.
,
86
, pp.
99
107
.
22.
Xiao
,
X.
,
Tan
,
Y.
,
Zhang
,
H.
,
Deng
,
R.
, and
Jiang
,
S.
,
2017
, “
Experimental and DEM Studies on the Particle Mixing Performance in Rotating Drums: Effect of Area Ratio
,”
Powder Technol.
,
314
, pp.
182
194
.
23.
Deb
,
S.
, and
Tafti
,
D. K.
,
2014
, “
Two and Three Dimensional Modeling of Fluidized Bed With Multiple Jets in a DEM–CFD Framework
,”
Particuology
,
16
, pp.
19
28
.
24.
Li
,
T.
, and
Guenther
,
C.
,
2012
, “
MFIX-DEM Simulations of Change of Volumetric Flow in Fluidized Beds Due to Chemical Reactions
,”
Powder Technol.
,
220
, pp.
70
78
.
25.
Xu
,
Y.
,
Li
,
T.
,
Musser
,
J.
,
Liu
,
X.
,
Xu
,
G.
, and
Rogers
,
W. A.
,
2017
, “
CFD-DEM Modeling the Effect of Column Size and bed Height on Minimum Fluidization Velocity in Micro Fluidized Beds With Geldart B Particles
,”
Powder Technol.
,
318
, pp.
321
328
.
26.
Guo
,
Z.
,
Zhang
,
S.
,
Tian
,
X.
,
Yang
,
J.
, and
Wang
,
Q.
,
2020
, “
Numerical Investigation of Tube Oscillation in Gravity-Driven Granular Flow With Heat Transfer by Discrete Element Method
,”
Energy
,
207
, p.
118203
.
27.
Tian
,
X.
,
Yang
,
J.
,
Guo
,
Z.
, and
Wang
,
Q.
,
2021
, “
Numerical Investigation of Gravity-Driven Granular Flow Around the Vertical Plate: Effect of Pin-Fin and Oscillation on the Heat Transfer
,”
Energies
,
14
(
8
), p.
2187
.
28.
Peng
,
Z.
,
Doroodchi
,
E.
, and
Moghtaderi
,
B.
,
2020
, “
Heat Transfer Modelling in Discrete Element Method (DEM)-Based Simulations of Thermal Processes: Theory and Model Development
,”
Prog. Energy Combust. Sci.
,
79
, p.
100847
.
29.
Batchelor
,
G. K.
, and
O'brien
,
R. W.
,
1977
, “
Thermal or Electrical Conduction Through a Granular Material
,”
Proc. R. Soc. A
,
355
(
1682
), pp.
313
333
.
30.
Wang
,
S.
,
Luo
,
K.
,
Hu
,
C.
,
Lin
,
J.
, and
Fan
,
J.
,
2019
, “
CFD-DEM Simulation of Heat Transfer in Fluidized Beds: Model Verification, Validation, and Application
,”
Chem. Eng. Sci.
,
197
, pp.
280
295
.
31.
Denloye
,
A. O. O.
, and
Botterill
,
J. S. M.
,
1977
, “
Heat Transfer in Flowing Packed Beds
,”
Chem. Eng. Sci.
,
32
(
5
), pp.
461
465
.
32.
Sullivan
,
W. N.
, and
Sabersky
,
R. H.
,
1975
, “
Heat Transfer to Flowing Granular Media
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
97
107
.
33.
Spelt
,
J. K.
,
Brennen
,
C. E.
, and
Sabersky
,
R. H.
,
1982
, “
Heat Transfer to Flowing Granular Material
,”
Int. J. Heat Mass Transfer
,
25
(
6
), pp.
791
796
.
34.
Lv
,
W.
,
Li
,
D.
, and
Dong
,
L.
,
2020
, “
Study on Mechanical Properties of a Hierarchical Octet-Truss Structure
,”
Compos. Struct.
,
249
, p.
112640
.
35.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
.
36.
Kaur
,
I.
, and
Singh
,
P.
,
2020
, “
Flow and Thermal Transport Through Unit Cell Topologies of Cubic and Octahedron Families
,”
Int. J. Heat Mass Transfer
,
158
, p.
119784
.
37.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Numerical Investigation on Conjugate Heat Transfer in Octet-Shape-Based Single Unit Cell Thick Metal Foam
,”
Int. Commun. Heat Mass Transfer
,
121
, p.
105090
.
38.
Kaur
,
I.
, and
Singh
,
P.
,
2022
, “
Direct Pore-Scale Simulations of Fully Periodic Unit Cells of Different Regular Lattices
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
2
), p.
022702
.
39.
Aider
,
Y.
,
Kaur
,
I.
,
Cho
,
H.
, and
Singh
,
P.
,
2022
, “
Periodic Heat Transfer Characteristics of Additively Manufactured Lattices
,”
Int. J. Heat Mass Transfer
,
189
, p.
122692
.
40.
Kaur
,
I.
,
Aider
,
Y.
,
Nithyanandam
,
K.
, and
Singh
,
P.
,
2022
, “
Thermal-Hydraulic Performance of Additively Manufactured Lattices for Gas Turbine Blade Trailing Edge Cooling
,”
Appl. Therm. Eng.
,
211
, p.
118461
.
41.
Kaur
,
I.
,
Mahajan
,
R. L.
, and
Singh
,
P.
,
2023
, “
Generalized Correlation for Effective Thermal Conductivity of High Porosity Architectured Materials and Metal Foams
,”
Int. J. Heat Mass Transfer
,
200
, p.
123512
.
42.
Wang
,
N.
,
Kaur
,
I.
,
Singh
,
P.
, and
Li
,
L.
,
2021
, “
Prediction of Effective Thermal Conductivity of Porous Lattice Structures and Validation With Additively Manufactured Metal Foams
,”
Appl. Therm. Eng.
,
187
, p.
116558
.
43.
Dong
,
L.
, and
Wadley
,
H.
,
2015
, “
Mechanical Properties of Carbon Fiber Composite Octet-Truss Lattice Structures
,”
Compos. Sci. Technol.
,
119
, pp.
26
33
.
44.
Aider
,
Y.
,
Cho
,
H.
, and
Singh
,
P.
,
2022
, “
Convective Heat Transfer Potential of Particles/Airflow Through Single Cell Thick Additively Manufactured Octet-Shaped Lattice Frame Material
,”
Heat Transfer Summer Conference
,
Philadelphia, PA
,
July 11–13
, Vol.
85796
, p.
V001T06A004
.
45.
Kloss
,
C.
,
Goniva
,
C.
,
Hager
,
A.
,
Amberger
,
S.
, and
Pirker
,
S.
,
2012
, “
Models, Algorithms and Validation for Opensource DEM and CFD–DEM
,”
Prog. Comput. Fluid Dyn.
,
12
(
2-3
), pp.
140
152
.
46.
Jahani
,
M.
,
Farzanegan
,
A.
, and
Noaparast
,
M.
,
2015
, “
Investigation of Screening Performance of Banana Screens Using LIGGGHTS DEM Solver
,”
Powder Technol.
,
283
, pp.
32
47
.
47.
Deb
,
S.
, and
Tafti
,
D.
,
2014
, “
Investigation of Flat Bottomed Spouted Bed With Multiple Jets Using DEM–CFD Framework
,”
Powder Technol.
,
254
, pp.
387
402
.
48.
Bagepalli
,
M. V.
,
Yarrington
,
J. D.
,
Schrader
,
A. J.
,
Zhang
,
Z. M.
,
Ranjan
,
D.
, and
Loutzenhiser
,
P. G.
,
2020
, “
Measurement of Flow Properties Coupled to Experimental and Numerical Analyses of Dense, Granular Flows for Solar Thermal Energy Storage
,”
Sol. Energy
,
207
, pp.
77
90
.
49.
Gallego
,
E.
,
Fuentes
,
J. M.
,
Wiącek
,
J.
,
Villar
,
J. R.
, and
Ayuga
,
F.
,
2019
, “
DEM Analysis of the Flow and Friction of Spherical Particles in Steel Silos With Corrugated Walls
,”
Powder Technol.
,
355
, pp.
425
437
.
50.
Washino
,
K.
,
Chan
,
E. L.
,
Miyazaki
,
K.
,
Tsuji
,
T.
, and
Tanaka
,
T.
,
2016
, “
Time Step Criteria in DEM Simulation of Wet Particles in Viscosity Dominant Systems
,”
Powder Technol.
,
302
, pp.
100
107
.
51.
Burns
,
S. J.
,
Piiroinen
,
P. T.
, and
Hanley
,
K. J.
,
2019
, “
Critical Time Step for DEM Simulations of Dynamic Systems Using a Hertzian Contact Model
,”
Int. J. Numer. Methods Eng.
,
119
(
5
), pp.
432
451
.
52.
Paulick
,
M.
,
Morgeneyer
,
M.
, and
Kwade
,
A.
,
2015
, “
Review on the Influence of Elastic Particle Properties on DEM Simulation Results
,”
Powder Technol.
,
283
, pp.
66
76
.
53.
Zhou
,
Y. C.
,
Xu
,
B. H.
,
Yu
,
A. B.
, and
Zulli
,
P.
,
2001
, “
Numerical Investigation of the Angle of Repose of Monosized Spheres
,”
Phys. Rev. E
,
64
(
2
), p.
021301
.
54.
Yan
,
Z.
,
Wilkinson
,
S. K.
,
Stitt
,
E. H.
, and
Marigo
,
M. J. C. P. M.
,
2015
, “
Discrete Element Modelling (DEM) Input Parameters: Understanding Their Impact on Model Predictions Using Statistical Analysis
,”
Comput. Part. Mech.
,
2
(
3
), pp.
283
299
.
55.
Xu
,
Y.
,
Kafui
,
K. D.
,
Thornton
,
C.
, and
Lian
,
G.
,
2002
, “
Effects of Material Properties on Granular Flow in a Silo Using DEM Simulation
,”
Part. Sci. Technol.
,
20
(
2
), pp.
109
124
.
You do not currently have access to this content.