Abstract

This paper presents the use of sliding pressure inventory control (SPIC) of a 10 MW supercritical carbon dioxide Brayton cycle for concentrated solar power, incorporating printed circuit heat exchangers. Load regulation using SPIC for three representative ambient conditions 45 °C, 30 °C, and 15 °C are considered. While a wide operating range from 10 MW to less than 1 MW part load is obtained, a notable cycle efficiency decline at part load is also seen. Irreversibility analysis reveals that deterioration in recuperator and turbomachinery performance are primarily responsible for cycle performance degradation at part load. Nevertheless, useful inferences are obtained from the 10 MW SPIC irreversibility study. With a slightly increased value of heat exchanger length, a non-condensing 1 MW subcritical CO2 cycle operating between 35 bar/53 bar is found to be as efficient as a 1 MW supercritical CO2 cycle operating between 88 bar/210 bar. The major benefit of choosing the subcritical CO2 cycle for 1 MW scale applications is the significantly reduced turbomachinery speed (∼26,000 rpm) in comparison with supercritical CO2 turbomachinery (∼67,000 rpm) for the same power scale. These advantages are found to be true for air-based ideal gas cycles operating between 35 bar/53 bar too, with the latter requiring nominally smaller heat exchangers than the subcritical CO2 cycle. The final choice of working fluid, however, for these low-pressure cycles would depend on practical considerations, such as material compatibilities at high temperatures, corrosion considerations, and cost.

References

1.
Pitz-Paal
,
R.
,
2020
, “Concentrating Solar Power,”
Future Energy: Improved, Sustainable and Clean Options for Our Planet
,
T. M.
Letcher
, ed.,
Elsevier
,
Amsterdam
, pp.
413
430
.
2.
Liu
,
M.
,
Tay
,
N. S.
,
Bell
,
S.
,
Belusko
,
M.
,
Jacob
,
R.
,
Will
,
G.
,
Saman
,
W.
, and
Bruno
,
F.
,
2016
, “
Review on Concentrating Solar Power Plants and New Developments in High Temperature Thermal Energy Storage Technologies
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
1411
1432
.
3.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
4.
Alsagri
,
A. S.
,
Chiasson
,
A.
, and
Gadalla
,
M.
,
2019
, “
Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051006
.
5.
White
,
M. T.
,
Bianchi
,
G.
,
Chai
,
L.
,
Tassou
,
S. A.
, and
Sayma
,
A. I.
,
2021
, “
Review of Supercritical CO2 Technologies and Systems for Power Generation
,”
Appl. Therm. Eng.
,
185
, p.
116447
.
6.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Dyreby
,
J.
,
2012
, “
Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 5: Manufacturing Materials and Metallurgy; Marine; Microturbines and Small Turbomachinery; Supercritical CO2 Power Cycles
,
Copenhagen, Denmark
,
June 11–15
,
ASME
, pp.
967
973
.
7.
Ho
,
C. K.
,
Carlson
,
M.
,
Garg
,
P.
, and
Kumar
,
P.
,
2016
, “
Technoeconomic Analysis of Alternative Solarized s-CO2 Brayton Cycle Configurations
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051008
.
8.
Keller
,
C.
,
1956
, “
Operating Experience and Design Features of Closed Cycle Gas Turbine Power Plants
,”
Proceedings of the ASME 1956 Gas Turbine Power Conference
,
Washington, DC
,
April 16–18
,
ASME
, p.
V001T01A015
.
9.
Dyreby
,
J. J.
,
Klein
,
S. A.
,
Nellis
,
G. F.
, and
Reindl
,
D. T.
,
2013
, “
Modeling Off-Design and Part-Load Performance of Supercritical Carbon Dioxide Power Cycles
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 8: Supercritical CO2 Power Cycles; Wind Energy; Honors and Awards
,
San Antonio, TX
,
Jun 3–7
,
ASME
, p.
V008T34A014
.
10.
Alfani
,
D.
,
Binotti
,
M.
,
Macchi
,
E.
,
Silva
,
P.
, and
Astolfi
,
M.
,
2021
, “
sCO2 Power Plants for Waste Heat Recovery: Design Optimization and Part-Load Operation Strategies
,”
Appl. Therm. Eng.
,
195
, p.
117013
.
11.
Yang
,
J.
,
Yang
,
Z.
, and
Duan
,
Y.
,
2020
, “
Off-Design Performance of a Supercritical CO2 Brayton Cycle Integrated With a Solar Power Tower System
,”
Energy
,
201
, p.
117676
.
12.
Li
,
H.
,
Fan
,
G.
,
Cao
,
L.
,
Yang
,
Y.
,
Yan
,
X.
,
Dai
,
Y.
,
Zhang
,
G.
, and
Wang
,
J.
,
2020
, “
A Comprehensive Investigation on the Design and Off-Design Performance of Supercritical Carbon Dioxide Power System Based on the Small-Scale Lead-Cooled Fast Reactor
,”
J. Cleaner Prod.
,
256
, p.
120720
.
13.
Saeed
,
M.
,
Khatoon
,
S.
, and
Kim
,
M. H.
,
2019
, “
Design Optimization and Performance Analysis of a Supercritical Carbon Dioxide Recompression Brayton Cycle Based on the Detailed Models of the Cycle Components
,”
Energy Convers. Manage.
,
196
, pp.
242
260
.
14.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
15.
Marion
,
J.
,
Macadam
,
S.
,
McClung
,
A.
, and
Mortzheim
,
J.
,
2022
, “
The STEP 10 MWe sCO2 Pilot Demonstration Status Update
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 9: Supercritical CO2
,
Rotterdam, Netherlands
,
June 13–17
,
ASME
, p.
V009T28A034
.
16.
Pandey
,
V.
,
Seshadri
,
L.
, and
Kumar
,
P.
,
2019
, “
Novel Modelling Approach and Stack Optimization for Recuperator in s-CO2 Brayton Cycle
,”
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019)
,
IIT Roorkee, Roorkee, India
,
Dec. 28–31, 2010
, pp.
205
210
. .
17.
Pandey
,
V.
,
Kumar
,
P.
, and
Dutta
,
P.
,
2020
, “
Thermo-hydraulic Analysis of Compact Heat Exchanger for a Simple Recuperated sCO2 Brayton Cycle
,”
Renew. Sustain. Energy Rev.
,
134
(
September
), p.
110091
.
18.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
367
.
19.
Jackson
,
J. D.
,
2013
, “
Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure
,”
Nucl. Eng. Des.
,
264
, pp.
24
40
.
20.
Jiang
,
Y.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Bhattacharyya
,
D.
,
2018
, “
Optimal Design of Microtube Recuperators for an Indirect Supercritical Carbon Dioxide Recompression Closed Brayton Cycle
,”
Appl. Energy
,
216
, pp.
634
648
.
21.
Bejan
,
A.
,
2004
,
Convective Heat Transfer
, 3rd ed.,
John WIley India Private Limited
,
New Delhi
.
22.
Seshadri
,
L.
,
Kumar
,
P.
,
Nassar
,
A.
, and
Giri
,
G.
,
2022
, “
Analysis of Turbomachinery Losses in sCO2 Brayton Power Blocks
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112101
.
23.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
New York
.
24.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics
,
ASME
,
New York
.
25.
Softinway Inc.
, “AxSTREAM,” https://www.softinway.com/en/
26.
Galvas
,
M. R.
,
1972
,
Analytical Correlation of Centrifugal Compressor Design Geometry for Maximum Efficiency With Specific Speed
,
National Aeronautics and Space Administration (NASA)
, Technical Note, https://ntrs.nasa.gov/citations/19720011352
27.
Seshadri
,
L.
,
Patel
,
A.
,
Biradar
,
V.
,
Kumar
,
P.
, and
Gopi
,
P. C.
,
2022
, “
Two Stage Radial Compressor for a Kilowatt Scale Supercritical Carbon Dioxide Power Block: Design Considerations
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 9: Supercritical CO2
,
Rotterdam, Netherlands
,
June 13–17
,
ASME
, p.
V009T28A006
.
28.
Frutschi
,
H. U.
,
2005
,
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
,
ASME Press
,
New York
.
29.
Balje
,
O. E.
,
1981
,
Turbomachines. A Guide to Design, Selection and Theory
,
John Wiley
,
New York
.
You do not currently have access to this content.