Abstract

The opaque photovoltaic thermal (PVT) produces both thermal and electrical energy. In order to increase thermal energy, we have considered flexible (Al-based) photovoltaic (PV) module for the present study. Further, we have considered thermo-electric cooler (TEC) integrated with flexible PV module to enhance electrical power. As a result, an overall power can be increased in flexible PVT-TEC collector. A concept of series and parallel combination of flexible PVT-TEC collectors is proposed to optimize series (n) and parallel (m) combinations for a given number of N (=n × m) collectors for maximum overall exergy depending on thermal and electrical energies which have not been considered yet so far. Further, a new expression has also been developed for the heat removal factor and instantaneous thermal efficiency of the nth flexible PVT-TEC collector to investigate its effect on the nth flexible PVT-TEC collector performance. Numerical computations have been carried out for a given coldest climatic condition of Srinagar, India, and design parameters of Al-based PVT-TEC collectors using matlab R2021b. Based on numerical computations, the following conclusions have been drawn: (i) For case (a) (all flexible PVT-TEC collectors are connected in parallel), the daily overall exergy is 2.7 kW, which is 21.3% more than case (d). (All flexible PVT-TEC collectors are connected in series.) (ii) There is a drop of 20% in the mass flowrate factor due to the correction factor.

References

1.
Fairbrother
,
M.
,
Sevä
,
I. J.
, and
Kulin
,
J.
,
2019
, “
Political Trust and the Relationship Between Climate Change Beliefs and Support for Fossil Fuel Taxes: Evidence From a Survey of 23 European Countries
,”
Glob. Environ. Change
,
59
, p.
102003
.
2.
Choubineh
,
N.
,
Jannesari
,
H.
, and
Kasaeian
,
A.
,
2019
, “
Experimental Study of the Effect of Using Phase Change Materials on the Performance of an Air-Cooled Photovoltaic System
,”
Renewable Sustainable Energy Rev.
,
101
, pp.
103
111
.
3.
Dimri
,
N.
,
Tiwari
,
A.
, and
Tiwari
,
G. N.
,
2018
, “
Effect of Thermoelectric Cooler (TEC) Integrated at the Base of Opaque Photovoltaic (PV) Module to Enhance an Overall Electrical Efficiency
,”
Sol. Energy
,
166
, pp.
159
170
.
4.
Tripathi
,
R.
,
Bhatti
,
T. S.
, and
Tiwari
,
G. N.
,
2020
, “
Effect of Packing Factor on Electrical and Overall Energy Generation Through Low Concentrated Photovoltaic Thermal Collector in Composite Climate Condition
,”
Mater. Today: Proc.
,
31
, pp.
449
453
.
5.
Tiwari
,
S.
,
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2018
, “
PVT air Collector Integrated Greenhouse Dryers
,”
Renewable Sustainable Energy Rev.
,
90
, pp.
142
159
.
6.
Tiwari
,
A.
,
Alashqar
,
O. A.
, and
Dimri
,
N.
,
2020
, “
Modeling and Validation of Photovoltaic Thermoelectric Flat Plate Collector (PV-TE-FPC)
,”
Energy Convers. Manage.
,
205
, p.
112378
.
7.
Singh
,
A. K.
,
Singh
,
R. G.
, and
Tiwari
,
G. N.
,
2020
, “
Thermal and Electrical Performance Evaluation of Photo-Voltaic Thermal Compound Parabolic Concentrator Integrated Fixed Dome Biogas Plant
,”
Renewable Energy
,
154
, pp.
614
624
.
8.
Singh
,
A. K.
,
Tiwari
,
G. N.
,
Singh
,
R. G.
, and
Singh
,
R. K.
,
2020
, “
Active Heating of Outdoor Swimming Pool Water Using Different Solar Collector Systems
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
041008
.
9.
Babu
,
C.
, and
Ponnambalam
,
P.
,
2018
, “
The Theoretical Performance Evaluation of Hybrid PV-TEG System
,”
Energy Convers. Manage.
,
173
, pp.
450
460
.
10.
Liao
,
T.
,
Lin
,
B.
, and
Yang
,
Z.
,
2014
, “
Performance Characteristics of a Low Concentrated Photovoltaic–Thermoelectric Hybrid Power Generation Device
,”
Int. J. Therm.
,
77
, pp.
158
164
.
11.
Islam
,
S.
,
Dincer
,
I.
, and
Yilbas
,
B. S.
,
2015
, “
Energetic and Exergetic Performance Analyses of a Solar Energy-Based Integrated System for Multigeneration Including Thermoelectric Generators
,”
Energy
,
93
, pp.
1246
1258
.
12.
Sudharshan
,
K. Y.
,
Kumar
,
V. P.
, and
Barshilia
,
H. C.
,
2016
, “
Performance Evaluation of a Thermally Concentrated Solar Thermo-Electric Generator Without Optical Concentration
,”
Sol. Energy Mater. Sol. Cells
,
157
, pp.
93
100
.
13.
Huen
,
P.
, and
Daoud
,
W. A.
,
2017
, “
Advances in Hybrid Solar Photovoltaic and Thermoelectric Generators
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
1295
1302
.
14.
Yin
,
E.
,
Li
,
Q.
, and
Xuan
,
Y.
,
2017
, “
Thermal Resistance Analysis and Optimization of Photovoltaic-Thermoelectric Hybrid System
,”
Energy Convers. Manage.
,
143
, pp.
188
202
.
15.
Rodrigo
,
P. M.
,
Valera
,
A.
,
Fernández
,
E. F.
, and
Almonacid
,
F. M.
,
2019
, “
Performance and Economic Limits of Passively Cooled Hybrid Thermoelectric Generator-Concentrator Photovoltaic Modules
,”
Appl. Energy
,
238
, pp.
1150
1162
.
16.
Gupta
,
A.
,
Agrawal
,
S.
, and
Pal
,
Y.
,
2020
, “
Performance Evaluation of Hybrid Photovoltaic Thermal Thermoelectric Collector Using Grasshopper Optimization Algorithm With Simulated Annealing
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
061004
.
17.
Köysal
,
Y.
,
Özdemir
,
A. E.
, and
Atalay
,
T.
,
2018
, “
Experimental and Modeling Study on Solar System Using Linear Fresnel Lens and Thermoelectric Module
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061003
.
18.
Ong
,
K. S.
,
Naghavi
,
M. S.
, and
Lim
,
C.
,
2017
, “
Thermal and Electrical Performance of a Hybrid Design of a Solar-Thermoelectric System
,”
Energy Convers. Manage.
,
133
, pp.
31
40
.
19.
Yang
,
D.
, and
Yin
,
H.
,
2011
, “
Energy Conversion Efficiency of a Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization
,”
IEEE Trans. Energy Convers.
,
26
(
2
), pp.
662
670
.
20.
Dimri
,
N.
,
Tiwari
,
A.
, and
Tiwari
,
G. N.
,
2017
, “
Thermal Modelling of Semitransparent Photovoltaic Thermal (PVT) With Thermoelectric Cooler (TEC) Collector
,”
Energy Convers. Manage.
,
146
, pp.
68
77
.
21.
Dimri
,
N.
,
Tiwari
,
A.
, and
Tiwari
,
G. N.
,
2019
, “
Comparative Study of Photovoltaic Thermal (PVT) Integrated Thermoelectric Cooler (TEC) Fluid Collectors
,”
Renewable Energy
,
134
, pp.
343
356
.
22.
Moh'd A
,
A. N.
, and
Mugdadi
,
B.
,
2020
, “
A Hybrid Absorption/Thermo-Electric Cooling System Driven by a Concentrated Photovoltaic/Thermal Unit
,”
Sustainable Energy Technol. Assess.
,
40
, p.
100769
.
23.
Haiping
,
C.
,
Jiguang
,
H.
,
Heng
,
Z.
,
Kai
,
L.
,
Haowen
,
L.
, and
Shuangyin
,
L.
,
2019
, “
Experimental Investigation of a Novel Low Concentrating Photovoltaic/Thermal–Thermoelectric Generator Hybrid System
,”
Energy
,
166
, pp.
83
95
.
24.
Rejeb
,
O.
,
Shittu
,
S.
,
Li
,
G.
,
Ghenai
,
C.
,
Zhao
,
X.
,
Ménézo
,
C.
,
Jemni
,
A.
,
Jomaa
,
M. H.
, and
Bettayeb
,
M.
,
2021
, “
Comparative Investigation of Concentrated Photovoltaic Thermal-Thermoelectric With Nanofluid Cooling
,”
Energy Convers. Manage.
,
235
, p.
113968
.
25.
Lashin
,
A.
,
Turkestani
,
M. A.
, and
Sabry
,
M.
,
2019
, “
Concentrated Photovoltaic/Thermal Hybrid System Coupled With a Thermoelectric Generator
,”
Energies
,
12
(
13
), p.
2623
.
26.
Tiwari
,
A.
, and
Aggarwal
,
S.
,
2021
, “
Thermal Modelling, Performance Analysis and Exergy Study of a Concentrated Semi-Transparent Photovoltaic-Thermoelectric Generator (CSPV-TEG) Hybrid Power Generation System
,”
Int. J. Sustainable Energy
,
40
(
10
), pp.
947
976
.
27.
Shadmehri
,
M.
,
Narei
,
H.
,
Ghasempour
,
R.
, and
Shafii
,
M. B.
,
2018
, “
Numerical Simulation of a Concentrating Photovoltaic-Thermal Solar System Combined With Thermoelectric Modules by Coupling Finite Volume and Monte Carlo Ray-Tracing Methods
,”
Energy Convers. Manage.
,
172
, pp.
343
356
.
28.
Lekbir
,
A.
,
Hassani
,
S.
,
Mekhilef
,
S.
,
Saidur
,
R.
,
Ghani
,
M. R. A.
, and
Gan
,
C. K.
,
2021
, “
Energy Performance Investigation of Nanofluid-Based Concentrated Photovoltaic/Thermal-Thermoelectric Generator Hybrid System
,”
Int. J. Energy Res.
,
45
(
6
), pp.
9039
9057
.
29.
Riahi
,
A.
,
Ali
,
A. B. H.
,
Fadhel
,
A.
,
Guizani
,
A.
, and
Balghouthi
,
M.
,
2020
, “
Performance Investigation of a Concentrating Photovoltaic Thermal Hybrid Solar System Combined With Thermoelectric Generators
,”
Energy Convers. Manage.
,
205
, p.
112377
.
30.
Zhang
,
H.
,
Yue
,
H.
,
Huang
,
J.
,
Liang
,
K.
, and
Chen
,
H.
,
2021
, “
Experimental Studies on a Low Concentrating Photovoltaic/Thermal (LCPV/T) Collector With a Thermoelectric Generator (TEG) Module
,”
Renewable Energy
,
171
, pp.
1026
1040
.
31.
Shan
,
F.
,
Cao
,
L.
, and
Fang
,
G.
,
2013
, “
Dynamic Performances Modeling of a Photovoltaic–Thermal Collector With Water Heating in Buildings
,”
Energy Build.
,
66
, pp.
485
494
.
32.
Yuan
,
Y.
,
Ouyang
,
L.
,
Sun
,
L.
,
Cao
,
X.
,
Xiang
,
B.
, and
Zhang
,
X.
,
2017
, “
Effect of Connection Mode and Mass Flux on the Energy Output of a PVT Hot Water System
,”
Sol. Energy
,
158
, pp.
285
294
.
33.
Tiwari
,
G. N.
,
2002
,
Solar Energy: Fundamentals, Design, Modelling and Applications
,
Alpha Science International Ltd.
,
Oxford, UK
.
34.
Tiwari
,
G. N.
,
Fischer
,
O.
,
Mishra
,
R. K.
, and
Al-Helal
,
I. M.
,
2016
, “
Performance Evaluation of N-Photovoltaic Thermal (PVT) Water Collectors Partially Covered by Photovoltaic Module Connected in Series: An Experimental Study
,”
Sol. Energy
,
134
, pp.
302
313
.
35.
Alobaid
,
M.
,
Hughes
,
B.
,
Connor
,
DO’
,
Calautit
,
J.
, and
Heyes
,
A.
,
2018
, “
Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration
,”
J. Sustainable Dev. Energy Water Environ. Syst.
,
6
(
2
), pp.
305
322
.
36.
Ma
,
T.
,
Li
,
M.
, and
Kazemian
,
A.
,
2020
, “
Photovoltaic Thermal Module and Solar Thermal Collector Connected in Series to Produce Electricity and High-Grade Heat Simultaneously
,”
Appl. Energy
,
261
, p.
114380
.
37.
Li
,
M.
,
Zhong
,
D.
,
Ma
,
T.
,
Kazemian
,
A.
, and
Gu
,
W.
,
2020
, “
Photovoltaic Thermal Module and Solar Thermal Collector Connected in Series: Energy and Exergy Analysis
,”
Energy Convers. Manage.
,
206
, p.
112479
.
38.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Montoya-Márquez
,
O.
, and
Flores-Prieto
,
J. J.
,
2018
, “
Heat Removal Factor in Flat Plate Solar Collectors: Indoor Test Method
,”
Energies
,
11
(
10
), p.
2783
.
40.
Rostami
,
S.
,
Hamid
,
A. S. A.
,
Sopian
,
K.
,
Jarimi
,
H.
,
Bassim
,
A.
, and
Ibrahim
,
A.
,
2022
, “
Heat Transfer Analysis of the Flat Plate Solar Thermal Collectors With Elliptical and Circular Serpentine Tubes
,”
Appl. Sci.
,
12
(
9
), p.
4519
.
41.
Wang
,
D.
,
Mo
,
Z.
,
Liu
,
Y.
,
Ren
,
Y.
, and
Fan
,
J.
,
2022
, “
Thermal Performance Analysis of Large-Scale Flat Plate Solar Collectors and Regional Applicability in China
,”
Energy
,
238
, p.
121931
.
42.
Malvi
,
C. S.
,
Gupta
,
A.
,
Gaur
,
M. K.
,
Crook
,
R.
, and
Dixon-Hardy
,
D. W.
,
2017
, “
Experimental Investigation of Heat Removal Factor in Solar Flat Plate Collector for Various Flow Configurations
,”
Int. J. Green Energy
,
14
(
4
), pp.
442
448
.
43.
Verma
,
S. K.
,
Sharma
,
K.
,
Gupta
,
N. K.
,
Soni
,
P.
, and
Upadhyay
,
N.
,
2020
, “
Performance Comparison of Innovative Spiral Shaped Solar Collector Design With Conventional Flat Plate Solar Collector
,”
Energy
,
194
, p.
116853
.
44.
Bliss
,
R. W.
,
1959
, “
The Derivations of Several “Plate-Efficiency Factors” Useful in the Design of Flat-Plate Solar Heat Collectors
,”
Sol. Energy
,
3
(
4
), pp.
55
64
.
45.
Jin
,
D.
,
Zhang
,
M.
,
Wang
,
P.
, and
Xu
,
S.
,
2015
, “
Numerical Investigation of Heat Transfer and Fluid Flow in a Solar Air Heater Duct With Multi V-Shaped Ribs on the Absorber Plate
,”
Energy
,
89
, pp.
178
190
.
46.
Jin
,
D.
,
Quan
,
S.
,
Zuo
,
J.
, and
Xu
,
S.
,
2019
, “
Numerical Investigation of Heat Transfer Enhancement in a Solar Air Heater Roughened by Multiple V-Shaped Ribs
,”
Renewable Energy
,
134
, pp.
78
88
.
47.
Promvonge
,
P.
,
Promthaisong
,
P.
, and
Skullong
,
S.
,
2022
, “
Heat Transfer Augmentation in Solar Heat Exchanger Duct With Louver-Punched V-Baffles
,”
Sol. Energy
,
248
, pp.
103
120
.
48.
Promvonge
,
P.
,
Promthaisong
,
P.
, and
Skullong
,
S.
,
2022
, “
Experimental and Numerical Thermal Performance in Solar Receiver Heat Exchanger With Trapezoidal Louvered Winglet and Wavy Groove
,”
Sol. Energy
,
236
, pp.
153
174
.
49.
Zahran
,
S.
,
Sultan
,
A. A.
,
Bekheit
,
M.
, and
Elmarghany
,
M. R.
,
2022
, “
Heat Transfer Augmentation Through Rectangular Cross Section Duct With One Corrugated Surface: An Experimental and Numerical Study
,”
Case Stud. Therm. Eng.
,
36
, p.
102252
.
50.
Tiwari
,
G. N.
,
Md
,
M.
,
Khan
,
M. E.
,
Mishra
,
R. K.
, and
Garg
,
V.
,
2018
, “
Improved Hottel-Whillier-Bliss Equation for N-Photovoltaic Thermal-Compound Parabolic Concentrator (N-PVT-CPC) Collector
,”
Sol. Energy
,
166
, pp.
203
212
.
51.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
52.
Dimri
,
N.
,
Tiwari
,
A.
, and
Tiwari
,
G. N.
,
2019
, “
An Overall Exergy Analysis of Glass-Tedlar Photovoltaic Thermal Air Collector Incorporating Thermoelectric Cooler: A Comparative Study Using Artificial Neural Networks
,”
Energy Convers. Manage.
,
195
, pp.
1350
1358
.
You do not currently have access to this content.