Abstract

The interest in absorption chillers for air conditioning applications has increased recently due to the negligible electricity requirement. Especially in Turkey, where the potential of renewable energy sources such as solar energy is high, it is possible to achieve significant energy savings by utilizing absorption chillers. This study presents comprehensive energy and exergy analyses of a solar-driven single-effect absorption chiller with LiBr + LiCl/H2O (mass ratio 2:1) solution mixture. Thermodynamic optimization is carried out for the first time in this study to determine the optimum generator temperature using different absorber and condenser temperatures to maximize exergy efficiency of the absorption chiller. Also, generator temperature ranges for each absorber and condenser level are determined in this study so that the chiller using solution mixture can operate without crystallization. The coefficient of performance, total exergy destruction rate, and exergy efficiency of solar-driven absorption chiller for solar collector area of 194 m2 under a certain optimized operating condition are 0.402, 113.63 kW, and 1.255%, respectively. Thanks to an alternative solution mixture compared to LiBr/H2O, the effective thermodynamic parameters can be improved and become more advantageous. The comparison results demonstrated that the thermodynamic performance of the system not only increased but also the thermal capacities and collector area decreased.

References

1.
Iqbal
,
A. A.
, and
Al-Alili
,
A.
,
2019
, “
Review of Solar Cooling Technologies in the MENA Region
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
010801
.
2.
Altun
,
A. F.
, and
Kilic
,
M.
,
2020
, “
Economic Feasibility Analysis With the Parametric Dynamic Simulation of a Single Effect Solar Absorption Cooling System for Various Climatic Regions in Turkey
,”
Renewable Energy
,
152
, pp.
75
93
.
3.
Bellos
,
E.
,
Chatzovoulos
,
I.
, and
Tzivanidis
,
C.
,
2021
, “
Yearly Investigation of a Solar-Driven Absorption Refrigeration System With NH3-H2O Absorption Pair
,”
Ther. Sci. Eng. Prog.
,
23
, p.
100885
.
4.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2016
, “
Exergetic, Energetic and Financial Evaluation of a Solar Driven Absorption Cooling System With Various Collector Types
,”
Appl. Therm. Eng.
,
102
, pp.
749
759
.
5.
Modi
,
N.
,
Pandya
,
B.
,
Hosseinpour
,
J.
, and
Amidpour
,
M.
,
2019
, “
Thermodynamic and Economic Contrast of an Ionic Solution Operated Solar Absorption Cooling System With LiBr + H2O Pair for a Business Building in India
,”
Int. J. Air-Cond. Refrig.
,
27
(
4
), p.
1950035
.
6.
Pandya
,
B.
,
Modi
,
N.
,
Kumar
,
V.
,
Upadhyai
,
R.
, and
Patel
,
J.
,
2019
, “
Performance Comparison and Optimal Parameters Evaluation of Solar-Assisted NH3–NaSCN and NH3–LiNO3 Type Absorption Cooling System
,”
J. Therm. Anal. Calorim.
,
135
(
6
), pp.
3437
3452
.
7.
Arabkoohsar
,
A.
, and
Sadi
,
M.
,
2020
, “
A Solar PTC Powered Absorption Chiller Design for Co-Supply of District Heating and Cooling Systems in Denmark
,”
Energy
,
193
, p.
116789
.
8.
Gebreslassie
,
B. H.
,
Guillén-Gosálbez
,
G.
,
Jiménez
,
L.
, and
Boer
,
D.
,
2012
, “
Solar Assisted Absorption Cooling Cycles for Reduction of Global Warming: A Multi-objective Optimization Approach
,”
Sol. Energy
,
86
(
7
), pp.
2083
2094
.
9.
Al-Shamani
,
A. N.
,
2020
, “
Evaluation of Solar-Assisted Absorption Refrigeration Cycle by Using a Multi-Ejector
,”
J. Therm. Anal. Calorim.
,
142
(
4
), pp.
1477
1481
.
10.
Sharifi
,
S.
,
Heravi
,
F. N.
,
Shirmohammadi
,
R.
,
Ghasempour
,
R.
,
Petrakopoulou
,
F.
, and
Romeo
,
L. M.
,
2020
, “
Comprehensive Thermodynamic and Operational Optimization of a Solar-Assisted LiBr/Water Absorption Refrigeration System
,”
Energy Rep.
,
6
, pp.
2309
2323
.
11.
Gunhan
,
T.
,
Ekren
,
O.
,
Demir
,
V.
,
Hepbasli
,
A.
,
Erek
,
A.
, and
Sahin
,
A. S.
,
2014
, “
Experimental Exergetic Performance Evaluation of a Novel Solar Assisted LiCl–H2O Absorption Cooling System
,”
Energy Build.
,
68
, pp.
138
146
.
12.
Rosiek
,
S.
,
2019
, “
Exergy Analysis of a Solar-Assisted Air-Conditioning System: Case Study in Southern Spain
,”
Appl. Therm. Eng.
,
148
, pp.
806
816
.
13.
Said
,
S. A.
,
El-Shaarawi
,
M. A.
, and
Siddiqui
,
M. U.
,
2012
, “
Alternative Designs for a 24-h Operating Solar-Powered Absorption Refrigeration Technology
,”
Int. J. Refrig.
,
35
(
7
), pp.
1967
1977
.
14.
Salameh
,
W.
,
Nuwayhid
,
R.
,
Al Shaer
,
A.
, and
Gad El-Rab
,
M.
,
2022
, “
Preliminary Assessment of Parabolic Solar Trough-Driven NH3-H2O Absorption Cooling System for Beirut
,”
Energy Sources A: Recovery Util. Environ. Eff.
,
44
(
1
), pp.
1
15
.
15.
Pandya
,
B.
,
Kumar
,
V.
,
Matawala
,
V.
, and
Patel
,
J.
,
2018
, “
Thermal Comparison and Multi-Comprehensive Thermodynamic and Operational Optimization of a Solar-Assisted LiBr/Water Absorption Refrigeration System Objective Optimization of Single-Stage Aqua-Ammonia Absorption Cooling System Powered by Different Solar Collectors
,”
J. Therm. Anal. Calorim.
,
133
(
3
), pp.
1635
1648
.
16.
Aktemur
,
C.
, and
Ozturk
,
I. T.
,
2022
, “
Energetic and Exergetic Analysis of a Solar-Driven Single-Effect Absorption Refrigeration System Using LiBr+LiCl/H2O Solution Mixture
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061007
.
17.
Misra
,
R. D.
,
Sahoo
,
P. K.
,
Sahoo
,
S.
, and
Gupta
,
A.
,
2003
, “
Thermoeconomic Optimization of a Single Effect Water/LiBr Vapour Absorption Refrigeration System
,”
Int. J. Refrig.
,
26
(
2
), pp.
158
169
.
18.
Cimsit
,
C.
, and
Ozturk
,
I. T.
,
2012
, “
Analysis of Compression-Absorption Cascade Refrigeration Cycles
,”
Appl. Therm. Eng.
,
40
, pp.
311
317
.
19.
Saravanan
,
R.
, and
Maiya
,
M. P.
,
1999
, “
Influence of Thermodynamic and Thermophysical Properties of Water-Based Working Fluids for Bubble Pump Operated Vapour Absorption Refrigerator
,”
Energy Convers. Manage.
,
40
(
8
), pp.
845
860
.
20.
Salavera
,
D.
,
Esteve
,
X.
,
Patil
,
K. R.
,
Mainar
,
A. M.
, and
Coronas
,
A.
,
2004
, “
Solubility, Heat Capacity, and Density of Lithium Bromide+ Lithium Iodide+ Lithium Nitrate+ Lithium Chloride Aqueous Solutions at Several Compositions and Temperatures
,”
J. Chem. Eng. Data
,
49
(
3
), pp.
613
619
.
21.
Banu
,
P. A.
,
Sivamani
,
S.
,
Premkumar
,
T. M.
, and
Solomon
,
G. R.
,
2020
, “
Feasibility Studies on Alternative Aqueous Salt Mixture in Vapour Absorption Cooling
,”
Mater. Today: Proc.
,
33
, pp.
1121
1127
.
22.
Saravanan
,
R.
, and
Maiya
,
M. P.
,
1998
, “
Thermodynamic Comparison of Water-Based Working Fluid Combinations for a Vapour Absorption Refrigeration System
,”
Appl. Therm. Eng.
,
18
(
7
), pp.
553
568
.
23.
De Lucas
,
A.
,
Donate
,
M.
,
Molero
,
C.
,
Villaseñor
,
J.
, and
Rodríguez
,
J. F.
,
2004
, “
Performance Evaluation and Simulation of a New Absorbent for an Absorption Refrigeration System
,”
Int. J. Refrig.
,
27
(
4
), pp.
324
330
.
24.
Adegoke
,
C. O.
,
1993
, “
Solubility of the Water-Lithium-Bromide-Zinc-Bromide Combination
,”
Int. J. Refrig.
,
16
(
1
), pp.
45
48
.
25.
Li
,
Y.
,
Li
,
N.
,
Luo
,
C.
, and
Su
,
Q.
,
2019
, “
Study on a Quaternary Working Pair of CaCl2-LiNO3-KNO3/H2O for an Absorption Refrigeration Cycle
,”
Entropy
,
21
(
6
), p.
546
.
26.
Li
,
N.
,
Luo
,
C.
, and
Su
,
Q.
,
2018
, “
A Working Pair of CaCl2–LiBr–LiNO3/H2O and Its Application in a Single-Stage Solar-Driven Absorption Refrigeration Cycle
,”
Int. J. Refrig.
,
86
, pp.
1
13
.
27.
Donate
,
M.
,
Rodriguez
,
L.
,
De Lucas
,
A.
, and
Rodríguez
,
J. F.
,
2006
, “
Thermodynamic Evaluation of New Absorbent Mixtures of Lithium Bromide and Organic Salts for Absorption Refrigeration Machines
,”
Int. J. Refrig.
,
29
(
1
), pp.
30
35
.
28.
Huld
,
T.
,
Müller
,
R.
, and
Gambardella
,
A.
,
2012
, “
A New Solar Radiation Database for Estimating PV Performance in Europe and Africa
,”
Sol. Energy
,
86
(
6
), pp.
1803
1815
.
29.
Zhai
,
C.
, and
Wu
,
W.
,
2022
, “
Energetic, Exergetic, Economic, and Environmental Analysis of Microchannel Membrane-Based Absorption Refrigeration System Driven by Various Energy Sources
,”
Energy
,
239
, p.
122193
.
30.
Joybari
,
M. M.
, and
Haghighat
,
F.
,
2016
, “
Exergy Analysis of Single Effect Absorption Refrigeration Systems: The Heat Exchange Aspect
,”
Energy Convers. Manage.
,
126
, pp.
799
810
.
31.
Asadi
,
J.
,
Amani
,
P.
,
Amani
,
M.
,
Kasaeian
,
A.
, and
Bahiraei
,
M.
,
2018
, “
Thermo-Economic Analysis and Multi-Objective Optimization of Absorption Cooling System Driven by Various Solar Collectors
,”
Energy Convers. Manage.
,
173
, pp.
715
727
.
32.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
33.
Atmaca
,
I.
, and
Yigit
,
A.
,
2003
, “
Simulation of Solar-Powered Absorption Cooling System
,”
Renewable Energy
,
28
(
8
), pp.
1277
1293
.
34.
Boyaghchi
,
F. A.
, and
Heidarnejad
,
P.
,
2015
, “
Thermodynamic Analysis and Optimisation of a Solar Combined Cooling, Heating and Power System for a Domestic Application
,”
Int. J. Exergy
,
16
(
2
), pp.
139
168
.
35.
Aktemur
,
C.
,
Bilgin
,
F.
, and
Tunckol
,
S.
,
2021
, “
Optimisation on the Thermal Insulation Layer Thickness in Buildings With Environmental Analysis: An Updated Comprehensive Study for Turkey’s All Provinces
,”
J. Therm. Eng.
,
7
(
5
), pp.
1239
1256
.
36.
Kotas
,
Y. J.
,
1995
,
The Exergy Method for Thermal Plant Analysis
,
Paragon Publishing
,
UK
.
37.
Modi
,
N.
,
Pandya
,
B.
,
Kumar
,
V.
, and
Patel
,
J.
,
2020
, “
Dynamic Performance Investigation of Single-Effect NH3+ LiNO3 and NH3+ NaSCN Solar Cooling Cycles: A Case Study for Western Indian Climate
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051010
.
38.
Basu
,
D. N.
, and
Ganguly
,
A.
,
2015
, “
Conceptual Design and Performance Analysis of a Solar Thermal-Photovoltaic-Powered Absorption Refrigeration System
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031020
.
39.
Boyaghchi
,
F. A.
,
Mahmoodnezhad
,
M.
, and
Sabeti
,
V.
,
2016
, “
Exergoeconomic Analysis and Optimization of a Solar Driven Dual-Evaporator Vapor Compression-Absorption Cascade Refrigeration System Using Water/CuO Nanofluid
,”
J. Cleaner Prod.
,
139
, pp.
970
985
.
You do not currently have access to this content.