Abstract

A partially shaded photovoltaic (PV) array's characteristic curve is convoluted due to the disparity in irradiance levels between shaded and unshaded PV panels, resulting in power mismatch losses. This work presents a new hybrid approach combining the magic square (MS) array configuration and differential evolution-based adaptive perturb and observe (DEAPO) maximum power point tracking (MPPT) methodology to overcome the aforementioned problem. The proposed hybrid methodology is implemented in two steps: first, repositioning the PV panels as per the MS configuration to decrease the power losses of partial shading. In MS configuration, the concentrated shadow on a single row or column can spread over to the entire PV array equally without any physical or electrical switching of PV panels. Second, the DEAPO MPPT method is developed to find the global peak power point on the PV characteristic curve. Proportional-integral-derivative controller coefficients are optimized by differential evolution (DE) to enhance the tracking speed and convergence of the adaptive P&O MPPT. The simulation study of this work has been implemented using 4 × 4, 6 × 6, and 9 × 9 PV arrays in matlab/simulink environment, and the real-time validation is done through a 4 × 4, 5 kW PV array. The proficiency of the proposed hybrid approach is tested by creating various nonuniform and uniform shading patterns on the PV array. The simulation and experimental results prove that the proposed hybrid approach increases the power output by 19% and 20% higher than the existing total-cross-tie (TCT) configuration under nonuniform and uniform shading cases, respectively.

References

1.
Verma
,
R.
,
Kumar
,
S.
,
Rakshit
,
D.
, and
Premachandran
,
B.
,
2023
, “
Design and Optimization of Energy Consumption for a Low-Rise Building With Seasonal Variations Under Composite Climate of India
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011006
.
2.
Gwesha
,
A. O.
,
Li
,
P.
, and
Alfulayyih
,
Y. M.
,
2021
, “
Optimization of Fixed Photovoltaic Panel ‘Tilt’ Angles for Maximal Energy Harvest Considering Year-Around Sky Coverage Conditions
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021002
.
3.
Kavya
,
M.
, and
Jayalalitha
,
S.
,
2022
, “
A Novel Coarse and Fine Control Algorithm to Improve Maximum Power Point Tracking (MPPT) Efficiency in Photovoltaic System
,”
ISA Trans.
,
121
, pp.
180
190
.
4.
Wang
,
X. B.
,
Yang
,
Z. X.
, and
Wang
,
J. X.
,
2018
, “
A Ripple-Based Maximum Power Point Tracking Method for Three-Phase Grid-Connected Photovoltaic Inverter
,”
Trans. Inst. Meas. Control
,
40
(
2
), pp.
615
629
.
5.
Bentouati
,
L.
,
Cheknane
,
A.
,
Benyoucef
,
B.
, and
Barambones
,
O.
,
2021
, “
An Improved DC-DC Converter With High Voltage Gain Based on Fully Tapped Quadratic Boost Converter for Grid Connected Solar PV Micro-Inverter
,”
Trans. Inst. Meas. Control
,
43
(
1
), pp.
47
58
.
6.
Fawzy
,
I. Y.
,
Mohammed
,
Y. S.
,
Shehata
,
E. G.
, and
Abd El Sattar
,
M.
,
2021
, “
A Modified Perturb and Observe Technique for MPPT of Integrated PV System Using DC-DC Boost Converter
,”
J. Adv. Eng. Trends
,
40
(
1
), pp.
63
77
.
7.
Jately
,
V.
,
Azzopardi
,
B.
,
Joshi
,
J.
,
Venkateswaran
,
V. B.
,
Sharma
,
A.
, and
Arora
,
S.
,
2021
, “
Experimental Analysis of Hill-Climbing MPPT Algorithms Under Low Irradiance Levels
,”
Renewable Sustainable Energy Rev.
,
150
, p.
111467
.
8.
Bakar Siddique
,
M. A.
,
Asad
,
A.
,
Asif
,
R. M.
,
Rehman
,
A. U.
,
Sadiq
,
M. T.
, and
Ullah
,
I.
,
2021
, “
Implementation of Incremental Conductance MPPT Algorithm With Integral Regulator by Using Boost Converter in Grid-Connected PV Array
,”
IETE J. Res.
, pp.
1
14
.
9.
Ahmed
,
J.
, and
Salam
,
Z.
,
2015
, “
An Improved Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) Algorithm for Higher Efficiency
,”
Appl. Energy
,
150
, pp.
97
108
.
10.
Chowdhury
,
S. B. R.
,
Mukherjee
,
A.
, and
Gayen
,
P. K.
,
2021
, “
Maximum Power Point Tracking of Photovoltaic System by Perturb & Observe and Incremental Conductance Methods Under Normal and Partial Shading Conditions
,”
Innovations in Energy Management and Renewable Resources (52042)
,
Kolkata, India
, Feb. 5–7, INSPEC Accession Number: 20607577, pp.
1
6
.
11.
Fathi
,
M.
, and
Parian
,
J. A.
,
2021
, “
Intelligent MPPT for Photovoltaic Panels Using a Novel Fuzzy Logic and Artificial Neural Networks Based on Evolutionary Algorithms
,”
Energy Reports
,
7
, pp.
1338
1348
.
12.
Ali
,
M. N.
,
Mahmoud
,
K.
,
Lehtonen
,
M.
, and
Darwish
,
M. M. F.
,
2021
, “
An Efficient Fuzzy-Logic Based Variable-Step Incremental Conductance MPPT Method for Grid-Connected PV Systems
,”
IEEE Access
,
9
, pp.
26420
26430
.
13.
Eltamaly
,
A. M.
,
Al-Saud
,
M. S.
,
Abokhalil
,
A. G.
, and
Farh
,
H. M. H.
,
2020
, “
Photovoltaic Maximum Power Point Tracking Under Dynamic Partial Shading Changes by Novel Adaptive Particle Swarm Optimization Strategy
,”
Trans. Inst. Meas. Control
,
42
(
1
), pp.
104
115
.
14.
Hilali
,
A.
,
Mardoude
,
Y.
,
Essahlaoui
,
A.
,
Rahali
,
A.
, and
El Ouanjli
,
N.
,
2022
, “
Migration to Solar Water Pump System: Environmental and Economic Benefits and Their Optimization Using Genetic Algorithm Based MPPT
,”
Energy Reports
,
8
, pp.
10144
10153
.
15.
Yadav
,
K.
,
Kumar
,
B.
,
Guerrero
,
J. M.
, and
Lashab
,
A.
,
2022
, “
A Hybrid Genetic Algorithm and Grey Wolf Optimizer Technique for Faster Global Peak Detection in PV System Under Partial Shading
,”
Sustain. Comput. Inform. Syst.
,
35
, p.
100770
.
16.
Fares
,
D.
,
Fathi
,
M.
,
Shams
,
I.
, and
Mekhilef
,
S.
,
2021
, “
A Novel Global MPPT Technique Based on Squirrel Search Algorithm for PV Module Under Partial Shading Conditions
,”
Energy Convers. Manag.
,
230
, p.
113773
.
17.
Pathak
,
P. K.
,
Yadav
,
A. K.
, and
Alvi
,
P. A.
,
2020
, “
Advanced Solar MPPT Techniques Under Uniform and Non-Uniform Irradiance: A Comprehensive Review
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
040801
.
18.
Malathy
,
S.
, and
Ramaprabha
,
R.
,
2018
, “
Reconfiguration Strategies to Extract Maximum Power From Photovoltaic Array Under Partially Shaded Conditions
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
2922
2934
.
19.
Pendem
,
S. R.
, and
Mikkili
,
S.
,
2018
, “
Modeling, Simulation, and Performance Analysis of PV Array Configurations (Series, Series-Parallel, Bridge-Linked, and Honey-Comb) to Harvest Maximum Power Under Various Partial Shading Conditions
,”
Int. J. Green Energy
,
15
(
13
), pp.
795
812
.
20.
Saiprakash
,
C.
,
Mohapatra
,
A.
,
Nayak
,
B.
, and
Ghatak
,
S. R.
,
2021
, “
Analysis of Partial Shading Effect on Energy Output of Different Solar PV Array Configurations
,”
Mater. Today: Proc.
,
39
(
5
), pp.
1905
1909
.
21.
Yousri
,
D.
,
Fathy
,
A.
, and
El-Saadany
,
E. F.
,
2022
, “
Four Square Sudoku Approach for Alleviating Shading Effect on Total-Cross-Tied PV Array
,”
Energy Convers. Manag.
,
269
, p.
116105
.
22.
Sai Krishna
,
G.
, and
Moger
,
T.
,
2019
, “
Improved SuDoKu Reconfiguration Technique for Total-Cross-Tied PV Array to Enhance Maximum Power Under Partial Shading Conditions
,”
Renewable Sustainable Energy Rev.
,
109
, pp.
333
348
.
23.
Dhanalakshmi
,
B.
, and
Rajasekar
,
N.
,
2018
, “
Dominance Square Based Array Reconfiguration Scheme for Power Loss Reduction in Solar PhotoVoltaic (PV) Systems
,”
Energy Convers. Manag.
,
156
, pp.
84
102
.
24.
Satpathy
,
P. R.
, and
Sharma
,
R.
,
2018
, “
Power Loss Reduction in Partially Shaded PV Arrays by a Static SDP Technique
,”
Energy
,
156
, pp.
569
585
.
25.
Dhanalakshmi
,
B.
, and
Rajasekar
,
N.
,
2018
, “
A Novel Competence Square Based PV Array Reconfiguration Technique for Solar PV Maximum Power Extraction
,”
Energy Convers. Manag.
,
174
, pp.
897
912
.
26.
Aljafari
,
B.
,
Satpathy
,
P. R.
, and
Thanikanti
,
S. B.
,
2022
, “
Partial Shading Mitigation in PV Arrays Through Dragonfly Algorithm Based Dynamic Reconfiguration
,”
Energy
,
257
, p.
124795
.
27.
Solis-Cisneros
,
H. I.
,
Sevilla-Camacho
,
P. Y.
,
Robles-Ocampo
,
J. B.
,
Zuniga-Reyes
,
M. A.
,
Rodríguez-Resendíz
,
J.
,
Muniz-Soria
,
J.
, and
Hernández-Gutiérrez
,
C. A.
,
2022
, “
A Dynamic Reconfiguration Method Based on Neuro-Fuzzy Control Algorithm for Partially Shaded PV Arrays
,”
Sustain. Energy Technol. Assess.
,
52
(
Part B
), p.
102147
.
28.
Muhammad Ajmal
,
A.
,
Ramachandaramurthy
,
V. K.
,
Naderipour
,
A.
, and
Ekanayake
,
J. B.
,
2021
, “
Comparative Analysis of Two-Step GA-Based PV Array Reconfiguration Technique and Other Reconfiguration Techniques
,”
Energy Convers. Manag.
,
230
, p.
113806
.
29.
Rezk
,
H.
,
Fathy
,
A.
, and
Aly
,
M.
,
2021
, “
A Robust Photovoltaic Array Reconfiguration Strategy Based on Coyote Optimization Algorithm for Enhancing the Extracted Power Under Partial Shadow Condition
,”
Energy Reports
,
7
, pp.
109
124
.
30.
Zhang
,
X.
,
Li
,
C.
,
Li
,
Z.
,
Yin
,
X.
,
Yang
,
B.
,
Gan
,
L.
, and
Yu
,
T.
,
2021
, “
Optimal Mileage-Based PV Array Reconfiguration Using Swarm Reinforcement Learning
,”
Energy Convers. Manag.
,
232
, p.
113892
.
31.
Raj
,
R. D. A.
, and
Naik
,
K. A.
,
2022
, “
Optimal Reconfiguration of PV Array Based on Digital Image Encryption Algorithm: A Comprehensive Simulation and Experimental Investigation
,”
Energy Convers. Manag.
,
261
, p.
115666
.
32.
Raj
,
R. D. A.
, and
Naik
,
K. A.
,
2022
, “
A Novel Solar Photovoltaic Array Reconfiguration Technique Using Two-Dimensional Generalized Arnold’s Cat Map
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061001
.
33.
Raj
,
R. D. A.
, and
Naik
,
K. A.
,
2022
, “
A Generalized Henon Map-Based Solar PV Array Reconfiguration Technique for Power Augmentation and Mismatch Mitigation
,”
IETE J. Res.
, pp.
1
19
.
34.
Raj
,
R. D. A.
, and
Naik
,
K. A.
,
2022
, “
An Image Encryption Concept Based Solar Photovoltaic Array Reconfiguration Techniques for Mismatch Mitigation
,”
Energy Sources, Part A
,
44
(
1
), pp.
951
972
.
35.
Raj
,
R. D. A.
, and
Naik
,
K. A.
,
2022
, “
A Novel Scan Pattern for Reconfiguration of Partially Shaded Photovoltaic Arrays for Maximum Power Extraction
,”
Int. J. Circuit Theor. Appl.
, pp.
1
34
.
36.
El Iysaouy
,
L.
,
Lahbabi
,
M.
,
Baskys
,
A.
, and
Oumnad
,
A.
,
2020
, “
Performance Analysis of Partially Shaded Photovoltaic Array Using Magic Square View Configuration for Shade Dispersion
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
064502
.
37.
Harish Kumar Varma
,
G.
,
Barry
,
V. R.
, and
Jain
,
R. K.
,
2021
, “
A Novel Magic Square Based Physical Reconfiguration for Power Enhancement in Larger Size Photovoltaic Array
,”
IETE J. Res.
, pp.
1
14
.
38.
Sheng
,
M.
,
Chen
,
S.
,
Liu
,
W.
,
Mao
,
J.
, and
Liu
,
X.
,
2022
, “
A Differential Evolution With Adaptive Neighborhood Mutation and Local Search for Multi-Modal Optimization
,”
Neurocomputing
,
489
, pp.
309
322
.
39.
Rajavel
,
A.
, and
Rathina Prabha
,
N.
,
2021
, “
Fuzzy Logic Controller-Based Boost and Buck-Boost Converter for Maximum Power Point Tracking in Solar System
,”
Trans. Inst. Meas. Control
,
43
(
4
), pp.
945
957
.
40.
Garraoui
,
R.
,
Barambones
,
O.
,
Hamed
,
M. B.
, and
Lassaad
,
S.
,
2018
, “
Real-Time Implementation of a Maximum Power Point Tracking Algorithm Based on First Order Sliding Mode Strategy for Photovoltaic Power Systems
,”
Trans. Inst. Meas. Control
,
40
(
5
), pp.
1499
1509
.
41.
Tchakpedeou
,
A. B.
,
Lare
,
Y.
,
Napo
,
K.
, and
Fousseni
,
A.
,
2022
, “
An Improved Levenberg–Marquardt Approach With a New Reduced Form for the Identification of Parameters of the One-Diode Photovoltaic Model
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041005
.
42.
Anjum
,
S.
,
Mukherjee
,
V.
, and
Mehta
,
G.
,
2021
, “
Advanced SuDoKu-Based Reconfiguration Strategies for Maximum Power Extraction From Partially Shaded Solar Photovoltaic Array
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061003
.
43.
Harrag
,
A.
, and
Messalti
,
S.
,
2015
, “
Variable Step Size Modified P&O MPPT Algorithm Using GA-Based Hybrid Offline/Online PID Controller
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
1247
1260
.
44.
Tatabhatla
,
V. M. R.
,
Agarwal
,
A.
, and
Kanumuri
,
T.
,
2019
, “
Improved Power Generation by Dispersing the Uniform and Non-Uniform Partial Shades in Solar Photovoltaic Array
,”
Energy Convers. Manag.
,
197
, p.
111825
.
45.
Sai Krishna
,
G.
, and
Moger
,
T.
,
2019
, “
Optimal SuDoKu Reconfiguration Technique for Total-Cross-Tied PV Array to Increase Power Output Under Non-Uniform Irradiance
,”
IEEE Trans. Energy Convers.
,
34
(
4
), pp.
1973
1984
.
46.
Shankar
,
N.
, and
SaravanaKumar
,
N.
,
2020
, “
Reduced Partial Shading Effect in Multiple PV Array Configuration Model Using MPPT Based Enhanced Particle Swarm Optimization Technique
,”
Microprocess. Microsyst.
, p.
103287
.
47.
Gong
,
L.
,
Hou
,
G.
, and
Huang
,
C.
,
2022
, “
A Two-Stage MPPT Controller for PV System Based on the Improved Artificial Bee Colony and Simultaneous Heat Transfer Search Algorithm
,”
ISA Trans.
48.
Laxman
,
B.
,
Annamraju
,
A.
, and
Srikanth
,
N. V.
,
2021
, “
A Grey Wolf Optimized Fuzzy Logic Based MPPT for Shaded Solar Photovoltaic Systems in Microgrids
,”
Int. J. Hydrogen Energy
,
46
(
18
), pp.
10653
10665
.
49.
Pragya
,
N.
,
Sharma
,
N.
, and
Devnekar
,
A. E.
,
2017
, “
Estimation of Carbon Emissions/Savings Incurred by Wasteland and Abandoned Cropland-Conversion From Plantation of Biofuel Producing Perennial Tree Species—Case Study of India
,”
Glob. Ecol. Conserv.
,
11
, pp.
158
164
.
50.
Vijay
,
M.
, and
Saravanan
,
M.
,
2022
, “
Solar Irradiance Forecasting Using Bayesian Optimization Based Machine Learning Algorithm to Determine the Optimal Size of a Residential PV System
,”
International Conference on Sustainable Computing and Data Communication Systems
,
Erode, India
,
Apr. 7–9
, INSPEC Accession Number: 21725341, pp.
744
749
.
You do not currently have access to this content.