Abstract

This article presents a detailed analysis of parameters that affect the optical performance of parabolic trough solar collector (PTSC) and proposes a suitable method to optimize the relevant ones. A mathematical model is drafted and simulated for known geometry and parameters of industrial solar technology (IST) PTSC. The model was evaluated for three different configurations of IST PTSC involving distinct components. A comparison between the experimental results and model estimations indicates a maximum root-mean-square error (RMSE) of 0.7997, confirming the reliability of the proposed model. The influence of variations in absorber diameter (Dao), length (lrc), width (wrc), and focal length of PTSC (frc), along with direct normal incidence (In), dirt factors (ξdm, ξdhc), and angle of incidence (θ) on the optical performance of PTSC has been investigated. It was established that variation in mentioned parameters exhibits both positive and negative impacts on optical performance. After careful analysis, lrc, wrc, frc, Dao, and θ were chosen for optimization as it was perceived that by varying these in a reasonable range, an optimal set of parameters could be obtained that maximize the absorbed solar irradiation for a given PTSC. Genetic algorithm (GA), particle swarm optimization (PSO), and African vultures optimization algorithm (AVOA) are utilized to estimate the optimal values of parameters. Significant improvement in absorbed solar irradiation (∼16%) is registered with optimized parameters, suggesting that benefits can be obtained if a study is performed prior to producing PTSC modules for an application.

References

1.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
Parametric Analysis and Optimization of an Organic Rankine Cycle With Nanofluid Based Solar Parabolic Trough Collectors
,”
Renew. Energy
,
114
, pp.
1376
1393
.
2.
Weinstein
,
L. A.
,
Loomis
,
J.
,
Bhatia
,
B.
,
Bierman
,
D. M.
,
Wang
,
E. N.
, and
Chen
,
G.
,
2015
, “
Concentrating Solar Power
,”
Chem. Rev.
,
115
(
23
), pp.
12797
12838
.
3.
Yılmaz
,
İH
, and
Mwesigye
,
A.
,
2018
, “
Modeling, Simulation and Performance Analysis of Parabolic Trough Solar Collectors: A Comprehensive Review
,”
Appl. Energy
,
225
, pp.
135
174
.
4.
Uzair
,
M.
,
ur Rehman
,
N.
, and
Asif
,
M.
,
2022
, “
Effects of Receiver Misalignment on the Intercept Factor of Parabolic Trough Collectors
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
024502
.
5.
Zhu
,
G.
,
2013
, “
Study of the Optical Impact of Receiver Position Error on Parabolic Trough Collectors
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031021
.
6.
Rao
,
B. N.
, and
Reddy
,
K. S.
,
2022
, “
Optical and Structural Optimization of a Large Aperture Solar Parabolic Trough Collector
,”
Sustainable Energy Technol. Assess.
,
53
, p.
102418
.
7.
Wang
,
J.
,
Wang
,
J.
,
Bi
,
X.
, and
Wang
,
X.
,
2016
, “
Performance Simulation Comparison for Parabolic Trough Solar Collectors in China
,”
Int. J. Photoenergy
,
2016
, pp.
1
16
.
8.
Agagna
,
B.
,
Behar
,
O.
, and
Smaili
,
A.
,
2022
, “
Performance Analysis of Parabolic Trough Solar Collector Under Varying Optical Errors
,”
Energy Sources A: Recov. Util. Environ. Eff.
,
44
(
1
), pp.
1189
1207
.
9.
Goel
,
A.
,
Manik
,
G.
, and
Verma
,
O. P.
,
2022
, “
Combinatorial and Geometric Optimization of a Parabolic Trough Solar Collector
,”
Korean J. Chem. Eng.
,
39
(
2
), pp.
284
305
.
10.
Tzivanidis
,
C.
,
Bellos
,
E.
,
Korres
,
D.
,
Antonopoulos
,
K. A.
, and
Mitsopoulos
,
G.
,
2015
, “
Thermal and Optical Efficiency Investigation of a Parabolic Trough Collector
,”
Case Stud. Therm. Eng.
,
6
, pp.
226
237
.
11.
Fan
,
M.
,
You
,
S.
,
Xia
,
J.
,
Zheng
,
W.
,
Zhang
,
H.
,
Liang
,
H.
,
Li
,
X.
, and
Li
,
B.
,
2018
, “
An Optimized Monte Carlo Ray Tracing Optical Simulation Model and Its Applications to Line-Focus Concentrating Solar Collectors
,”
Appl. Energy
,
225
, pp.
769
781
.
12.
Huang
,
W.
,
Xu
,
Q.
, and
Hu
,
P.
,
2016
, “
Coupling 2D Thermal and 3D Optical Model for Performance Prediction of a Parabolic Trough Solar Collector
,”
Sol. Energy
,
139
, pp.
365
380
.
13.
Hoseinzadeh
,
H.
,
Kasaeian
,
A.
, and
Behshad Shafii
,
M.
,
2018
, “
Geometric Optimization of Parabolic Trough Solar Collector Based on the Local Concentration Ratio Using the Monte Carlo Method
,”
Energy Convers. Manage.
,
175
, pp.
278
287
.
14.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Du
,
B. C.
,
Wang
,
K.
, and
Liang
,
Q.
,
2015
, “
Geometric Optimization on Optical Performance of Parabolic Trough Solar Collector Systems Using Particle Swarm Optimization Algorithm
,”
Appl. Energy
,
148
, pp.
282
293
.
15.
Yang
,
M.
,
Zhu
,
Y.
,
Fu
,
W.
,
Pearce
,
G.
, and
Taylor
,
R. A.
,
2018
, “
Linear Solar Concentrator Structural Optimization Using Variable Beam Cross Sections
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061006
.
16.
Shaaban
,
S.
,
2021
, “
Enhancement of the Solar Trough Collector Efficiency by Optimizing the Reflecting Mirror Profile
,”
Renew. Energy
,
176
, pp.
40
49
.
17.
Shajan S
,
2022
, “
Secondary Reflector and Receiver Positions for Uniform Heat Flux Distribution in Parabolic Trough Solar Thermal Collector
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061006
.
18.
Goel
,
A.
,
Manik
,
G.
, and
Mahadeva
,
R.
,
2020
, “A Review of Parabolic Trough Collector and Its Modeling,”
Advances in Intelligent Systems and Computing
,
M.
Pant
,
T.
Sharma
,
O.
Verma
,
R.
Singla
, and
A.
Sikander
, eds.,
Springer
,
Singapore
, pp.
803
813
.
19.
Goel
,
A.
,
Verma
,
O. P.
, and
Manik
,
G.
,
2022
, “Analytical Modeling of Parabolic Trough Solar Collector,”
Soft Computing: Theories and Applications
,
R.
Kumar
,
C.W.
Ahn
,
T.K.
Sharma
,
O.P.
Verma
, and
A.
Agarwal
, eds.,
Springer
,
Singapore
, pp.
367
378
.
20.
Goel
,
A.
,
Manik
,
G.
, and
Verma
,
O. P.
,
2022
, “
Designing a Robust Analytical Model of a Parabolic Trough Solar Collector Through In-Depth Analysis of Convective Heat Transfers
,”
Arab. J. Sci. Eng.
,
47
(
5
), pp.
6535
6557
.
21.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
,
Cambridge, MA
.
22.
Yılmaz
,
H.
, and
Söylemez
,
M. S.
,
2014
, “
Thermo-Mathematical Modeling of Parabolic Trough Collector
,”
Energy Convers. Manage.
,
88
, pp.
768
784
.
23.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
322
370
.
24.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,” NREL Report No. NREL/TP-550-34169.
25.
Gaul
,
H.
, and
Rabl
,
A.
,
1980
, “
Incidence-Angle Modifier and Average Optical Efficiency of Parabolic Trough Collectors
,”
ASME J. Sol. Energy Eng.
,
102
(
1
), pp.
16
21
.
26.
Lippke
,
F.
,
1995
, “
Simulation of the Part-Load Behaviour of a 30 MW SEGS Plant
,”
Sandia National Laboratory
Report No. SAND-95-1293.
27.
Goel
,
A.
, and
Manik
,
G.
,
2021
, “Solar Thermal System—An Insight Into Parabolic Trough Solar Collector and Its Modeling,”
Renewable Energy Systems
,
AT
Azar
, and
NA
Kamal
, eds.,
Academic Press
,
Cambridge, MA
, pp.
309
337
.
28.
Dudley
,
V. E.
,
Evans
,
L. R.
, and
Matthews
,
C. W.
,
1995
, “
Test Results, Industrial Solar Technology Parabolic Trough Solar Collector
,”
Sandia National Laboratory
Report No. SAND-94-1117.
29.
Kambezidis
,
H. D.
,
2012
, “The Solar Resource,”
Comprehensive Renewable Energy
,
A
Sayigh
, ed.,
Elsevier
,
Amsterdam, Netherlands
, pp.
27
84
.
30.
Sethi
,
S. K.
,
Kadian
,
S.
,
Goel
,
A.
,
Chauhan
,
R. P.
, and
Manik
,
G.
,
2020
, “
Fabrication and Analysis of ZnO Quantum Dots Based Easy Clean Coating: A Combined Theoretical and Experimental Investigation
,”
ChemistrySelect
,
5
(
9
), pp.
8942
8950
.
31.
Hojjati
,
A.
,
Monadi
,
M.
,
Faridhosseini
,
A.
, and
Mohammadi
,
M.
,
2018
, “
Application and Comparison of NSGA-II and MOPSO in Multi-objective Optimization of Water Resources Systems
,”
J. Hydrol. Hydromech.
,
66
(
3
), pp.
323
329
.
32.
Sivanandam
,
S. N.
, and
Deepa
,
S. N.
,
2011
,
Principles of Soft Computing
,
Wiley
,
New Delhi, India
, pp.
385
464
.
33.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN’95—International Conference on Neural Networks
,
IEEE
,
Perth
,
Nov. 27–Dec. 01
, pp.
1942
1948
.
34.
Abdollahzadeh
,
B.
,
Gharehchopogh
,
F. S.
, and
Mirjalili
,
S.
,
2021
, “
African Vultures Optimization Algorithm: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems
,”
Comput. Ind. Eng.
,
158
, p.
107408
.
35.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2015
, “
A Novel Parabolic Trough Solar Collector Model—Validation With Experimental Data and Comparison to Engineering Equation Solver (EES)
,”
Energy Convers. Manage.
,
106
, pp.
268
281
.
36.
Abdulraheem-Alfellag
,
M. A.
,
2014
,
Modeling and Experimental Investigation of Parabolic Trough Solar Collector
,
Embry-Riddle Aeronautical University
,
Daytona Beach, FL
, pp.
1
95
.
37.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
Test Results—SEGS LS2 Collector. Sandia National Laboratories
,”
Sandia National Laboratory
Report No. SAND94-1884.
38.
Valenzuela
,
L.
,
López-Martín
,
R.
, and
Zarza
,
E.
,
2014
, “
Optical and Thermal Performance of Large-Size Parabolic-Trough Solar Collectors From Outdoor Experiments: A Test Method and a Case Study
,”
Energy
,
70
, pp.
456
464
.
You do not currently have access to this content.