Abstract

Unprecedented power outages and load shedding significantly impact power supply reliability in a power distribution network. Furthermore, extending grid availability to far-flung regions with higher distribution losses is not economically viable. Therefore, a hybrid renewable energy system (HRES) is developed, and its socio-techno-economic-environmental (STEE) viability in supplying reliable electricity to the village is being examined in this paper. STEE factor-based multi-target optimization and sizing technique are designed using the homer pro software. The factors considered are namely social (land cost, human progress index, and employment generation factor), technical (unmet load, renewable energy portion, duty factor, and excess energy factor), economical (annualized cost of system, cost of energy, and total net present cost), and environmental (carbon emission and particulate matter). Three HRES setups are investigated, with various combinations of photovoltaic (PV), wind turbine (WT), battery (BAT), biogas generator (BG), and diesel generator (DG) and the optimal configuration is selected by STEE performance analysis. Compared to other evaluated setups, the HRES design with PV–WT–BAT–BG–DG is optimal for a consistent power supply. A sensitivity analysis for the optimal setup’s macro-economic variables and component costs is performed to achieve a more feasible optimal setup. Furthermore, the optimal setup’s cost of energy (0.1813 $/kW h) is lower than that of the most recent study in the literature. The closeness of the hybrid optimization of multiple electric renewables (HOMER) results (cost of energy (0.1813 $/kW h), unmet load (2.86 kW h/year)) and particle swarm optimization results (cost of energy (0.1799 $/kW h), unmet load (2.60 kW h/year)) for the optimal HRES setup supports the validity of the HOMER method used in this investigation.

References

1.
Rajanna
,
S.
, and
Saini
,
R. P.
,
2016
, “
Development of Optimal Integrated Renewable Energy Model With Battery Storage for a Remote Indian Area
,”
Energy
,
111
, pp.
803
817
.
2.
CEA
,
All India Installed Capacity (in MW) of Power Stations
, Cent Electricity Authority, Minist Power 2020, http://www.cea.nic.in/reports/monthly/installed capacity 2016/installed_capacity-03.pdf
3.
GOI
,
Power Sector at a Glance All India
, Gov India, Minist Power 2020, https://powermin.nic.in/en/content/power-sector-glance-all-india
4.
Ramchandran
,
N.
,
Pai
,
R.
, and
Parihar
,
A. K. S.
,
2016
, “
Feasibility Assessment of Anchor-Business-Community Model for Off-Grid Rural Electrification in India
,”
Renew. Energy
,
97
, pp.
197
209
.
5.
Petrollese
,
M.
, and
Cocco
,
D.
,
2020
, “
Techno-Economic Assessment of Hybrid CSP-Biogas Power Plants
,”
Renew. Energy
,
155
, pp.
420
431
.
6.
Sanajaoba
,
S.
, and
Fernandez
,
E.
,
2016
, “
Maiden Application of Cuckoo Search Algorithm for Optimal Sizing of a Remote Hybrid Renewable Energy System
,”
Renew. Energy
,
96
, pp.
1
10
.
7.
Poonam
,
S.
,
Manjaree
,
P.
, and
Laxmi
,
S.
,
2020
, “
Comparison of Traditional and Swarm Intelligence Based Techniques for Optimization of Hybrid Renewable Energy System
,”
Renew. Energy Focus
,
35
, pp.
1
9
.
8.
Maleki
,
A.
, and
Askarzadeh
,
A.
,
2014
, “
Comparative Study of Artificial Intelligence Techniques for Sizing of a Hydrogen-Based Stand-Alone Photovoltaic/Wind Hybrid System
,”
Int. J. Hydrogen Energy
,
39
, pp.
9973
9984
.
9.
Fetanat
,
A.
, and
Khorasaninejad
,
E.
,
2015
, “
Size Optimization for Hybrid Photovoltaic–Wind Energy System Using Ant Colony Optimization for Continuous Domains Based Integer Programming
,”
Appl. Soft Comput.
,
31
, pp.
196
209
.
10.
Maleki
,
A.
, and
Pourfayaz
,
F.
,
2015
, “
Sizing of Stand-Alone Photovoltaic/Wind/Diesel System With Battery and Fuel Cell Storage Devices by Harmony Search Algorithm
,”
J. Energy Storage
,
2
, pp.
30
42
.
11.
Alshammari
,
N.
, and
Asumadu
,
J.
,
2020
, “
Optimum Unit Sizing of Hybrid Renewable Energy System Utilizing Harmony Search, Jaya and Particle Swarm Optimization Algorithms
,”
Sustain. Cities Soc.
,
60
, p.
102255
.
12.
Javed
,
M. S.
,
Ma
,
T.
,
Jurasz
,
J.
,
Ahmed
,
S.
, and
Mikulik
,
J.
,
2020
, “
Performance Comparison of Heuristic Algorithms for Optimization of Hybrid Off-Grid Renewable Energy Systems
,”
Energy
,
210
, p.
118599
.
13.
Makhdoomi
,
S.
, and
Askarzadeh
,
A.
,
2021
, “
Impact of Solar Tracker and Energy Storage System on Sizing of Hybrid Energy Systems: A Comparison Between Diesel/PV/PHS and Diesel/PV/FC
,”
Energy
,
231
, p.
120920
.
14.
Kaabeche
,
A.
, and
Bakelli
,
Y.
,
2019
, “
Renewable Hybrid System Size Optimization Considering Various Electrochemical Energy Storage Technologies
,”
Energy Convers. Manage.
,
193
, pp.
162
175
.
15.
Jamshidi
,
S.
,
Pourhossein
,
K.
, and
Asadi
,
M.
,
2021
, “
Size Estimation of Wind/Solar Hybrid Renewable Energy Systems Without Detailed Wind and Irradiation Data: A Feasibility Study
,”
Energy Convers. Manage.
,
234
, p.
113905
.
16.
Sinha
,
S.
, and
Chandel
,
S. S.
,
2015
, “
Prospects of Solar Photovoltaic–Micro-Wind Based Hybrid Power Systems in Western Himalayan State of Himachal Pradesh in India
,”
Energy Convers. Manage.
,
105
, pp.
1340
1351
.
17.
Huang
,
Q.
,
Shi
,
Y.
,
Wang
,
Y.
,
Lu
,
L.
, and
Cui
,
Y.
,
2015
, “
Multi-Turbine Wind-Solar Hybrid System
,”
Renew. Energy
,
76
, pp.
401
407
.
18.
Sinha
,
S.
, and
Chandel
,
S. S.
,
2014
, “
Review of Software Tools for Hybrid Renewable Energy Systems
,”
Renew. Sustain. Energy Rev.
,
32
, pp.
192
205
.
19.
Ramesh
,
M.
, and
Saini
,
R. P.
,
2020
, “
Dispatch Strategies Based Performance Analysis of a Hybrid Renewable Energy System for a Remote Rural Area in India
,”
J. Cleaner Prod.
,
259
, p.
120697
.
20.
Mokhtara
,
C.
,
Negrou
,
B.
,
Bouferrouk
,
A.
,
Yao
,
Y.
,
Settou
,
N.
, and
Ramadan
,
M.
,
2020
, “
Integrated Supply–Demand Energy Management for Optimal Design of Off-Grid Hybrid Renewable Energy Systems for Residential Electrification in Arid Climates
,”
Energy Convers. Manage.
,
221
, p.
113192
.
21.
Sawle
,
Y.
,
Gupta
,
S. C.
, and
Bohre
,
A. K.
,
2018
, “
Socio-Techno-Economic Design of Hybrid Renewable Energy System Using Optimization Techniques
,”
Renew. Energy
,
119
, pp.
459
472
.
22.
Dufo-López
,
R.
,
Cristóbal-Monreal
,
I. R.
, and
Yusta
,
J. M.
,
2016
, “
Optimisation of PV-Wind-Diesel-Battery Stand-Alone Systems to Minimise Cost and Maximise Human Development Index and Job Creation
,”
Renew. Energy
,
94
, pp.
280
293
.
23.
Mayer
,
M. J.
,
Szilágyi
,
A.
, and
Gróf
,
G.
,
2020
, “
Environmental and Economic Multi-Objective Optimization of a Household Level Hybrid Renewable Energy System by Genetic Algorithm
,”
Appl. Energy
,
269
, p.
115058
.
24.
Jahangir
,
M. H.
, and
Cheraghi
,
R.
,
2020
, “
Economic and Environmental Assessment of Solar-Wind-Biomass Hybrid Renewable Energy System Supplying Rural Settlement Load
,”
Sustain. Energy Technol. Assess.
,
42
, p.
100895
.
25.
Tamoor
,
M.
,
Suleman Tahir
,
M.
,
Sagir
,
M.
,
Tahir
,
M. B.
,
Iqbal
,
S.
, and
Nawaz
,
T.
,
2020
, “
Design of 3 KW Integrated Power Generation System From Solar and Biogas
,”
Int. J. Hydrogen Energy
,
45
(
23
), pp.
12711
12720
.
26.
Chauhan
,
A.
, and
Saini
,
R. P.
,
2016
, “
Discrete Harmony Search Based Size Optimization of Integrated Renewable Energy System for Remote Rural Areas of Uttarakhand State in India
,”
Renew. Energy
,
94
, pp.
587
604
.
27.
Chauhan
,
A.
, and
Saini
,
R. P.
,
2016
, “
Techno-Economic Optimization Based Approach for Energy Management of a Stand-Alone Integrated Renewable Energy System for Remote Areas of India
,”
Energy
,
94
, pp.
138
156
.
28.
Suresh
,
V.
,
Muralidhar
,
M.
, and
Kiranmayi
,
R.
,
2020
, “
Modelling and Optimization of an Off-Grid Hybrid Renewable Energy System for Electrification in a Rural Areas
,”
Energy Rep.
,
6
, pp.
594
604
.
29.
Suresh
,
M.
, and
Meenakumari
,
R.
,
2019
, “
An Improved Genetic Algorithm-Based Optimal Sizing of Solar Photovoltaic/Wind Turbine Generator/Diesel Generator/Battery Connected Hybrid Energy Systems for Standalone Applications
,”
Int. J. Ambient Energy
,
42
(
10
), pp.
1136
1143
.
30.
Kumar
,
J.
,
Suryakiran
,
B. V.
,
Verma
,
A.
, and
Bhatti
,
T. S.
,
2019
, “
Analysis of Techno-Economic Viability With Demand Response Strategy of a Grid-Connected Microgrid Model for Enhanced Rural Electrification in Uttar Pradesh State, India
,”
Energy
,
178
, pp.
176
185
.
31.
Singh
,
S.
,
Kanwar
,
N.
,
Zindani
,
D.
, and
Jadoun
,
V. K.
,
2021
, “
Decision Making Approach for Assessing the Suitable Hybrid Renewable Energy Based Microgrid System for Rural Electrification in India
,”
Mater. Today: Proc.
,
51
(
Part 1
), pp.
21
25
.
32.
Murugaperumal
,
K.
, and
Raj
,
P. A. D. V.
,
2019
, “
Feasibility Design and Techno-Economic Analysis of Hybrid Renewable Energy System for Rural Electrification
,”
Sol. Energy
,
188
, pp.
1068
1083
.
33.
Baruah
,
A.
,
Basu
,
M.
, and
Amuley
,
D.
,
2021
, “
Modeling of an Autonomous Hybrid Renewable Energy System for Electrification of a Township: A Case Study for Sikkim, India
,”
Renew. Sustain. Energy Rev.
,
135
, p.
110158
.
34.
Nuvvula
,
R. S. S.
,
Devaraj
,
E.
,
Elavarasan
,
R. M.
,
Taheri
,
S. I.
,
Irfan
,
M.
, and
Teegala
,
K. S.
,
2022
, “
Multi-Objective Mutation-Enabled Adaptive Local Attractor Quantum Behaved Particle Swarm Optimisation Based Optimal Sizing of Hybrid Renewable Energy System for Smart Cities in India
,”
Sustain. Energy Technol. Assess.
,
49
, p.
101689
.
35.
Memon
,
S. A.
,
Upadhyay
,
D. S.
, and
Patel
,
R. N.
,
2021
, “
Optimal Configuration of Solar and Wind-Based Hybrid Renewable Energy System With and Without Energy Storage Including Environmental and Social Criteria: A Case Study
,”
J. Energy Storage
,
44
, p.
103446
.
36.
Sanajaoba
,
S.
,
2019
, “
Optimal Sizing of Off-Grid Hybrid Energy System Based on Minimum Cost of Energy and Reliability Criteria Using Firefly Algorithm
,”
Sol. Energy
,
188
, pp.
655
666
.
37.
Khan
,
F. A.
,
Pal
,
N.
, and
Saeed
,
S. H.
,
2021
, “
Optimization and Sizing of SPV/Wind Hybrid Renewable Energy System: A Techno-Economic and Social Perspective
,”
Energy
,
233
, p.
121114
.
38.
Kumar
,
P. P.
, and
Saini
,
R. P.
,
2020
, “
Optimization of an Off-Grid Integrated Hybrid Renewable Energy System With Different Battery Technologies for Rural Electrification in India
,”
J. Energy Storage
,
32
, p.
101912
.
39.
Das
,
S.
,
Ray
,
A.
, and
De
,
S.
,
2020
, “
Optimum Combination of Renewable Resources to Meet Local Power Demand in Distributed Generation: A Case Study for a Remote Place of India
,”
Energy
,
209
, p.
118473
.
40.
Murugaperumal
,
K.
,
Srinivasn
,
S.
, and
Satya Prasad
,
G. R. K. D.
,
2020
, “
Optimum Design of Hybrid Renewable Energy System Through Load Forecasting and Different Operating Strategies for Rural Electrification
,”
Sustain. Energy Technol. Assess.
,
37
, p.
100613
.
41.
Jeslin Drusila Nesamalar
,
J.
,
Suruthi
,
S.
,
Charles Raja
,
S.
, and
Tamilarasu
,
K.
,
2021
, “
Techno-Economic Analysis of Both On-Grid and Off-Grid Hybrid Energy System With Sensitivity Analysis for an Educational Institution
,”
Energy Convers. Manage.
,
239
, p.
114188
.
42.
Kumar
,
P.
,
Pal
,
N.
, and
Sharma
,
H.
,
2021
, “
Techno-Economic Analysis of Solar Photo-Voltaic/Diesel Generator Hybrid System Using Different Energy Storage Technologies for Isolated Islands of India
,”
J. Energy Storage
,
41
, p.
102965
.
43.
Malik
,
P.
,
Awasthi
,
M.
, and
Sinha
,
S.
,
2021
, “
Techno-Economic and Environmental Analysis of Biomass-Based Hybrid Energy Systems: A Case Study of a Western Himalayan State in India
,”
Sustain. Energy Technol. Assess.
,
45
, p.
101189
.
44.
Rai
,
A.
,
Shrivastava
,
A.
,
Jana
,
K. C.
, and
Jayalakshmi
,
N. S.
,
2021
, “
Techno-Economic-Environmental and Sociological Study of a Microgrid for the Electrification of Difficult Un-Electrified Isolated Villages
,”
Sustain. Energy Grids Netw.
,
28
, p.
100548
.
45.
Das
,
M.
,
Singh
,
M. A. K.
, and
Biswas
,
A.
,
2019
, “
Techno-Economic Optimization of an Off-Grid Hybrid Renewable Energy System Using Metaheuristic Optimization Approaches—Case of a Radio Transmitter Station in India
,”
Energy Convers. Manage.
,
185
, pp.
339
352
.
46.
Krishan
,
O.
, and
Suhag
,
S.
,
2019
, “
Techno-Economic Analysis of a Hybrid Renewable Energy System for an Energy Poor Rural Community
,”
J. Energy Storage
,
23
, pp.
305
319
.
47.
Elkadeem
,
M. R.
,
Wang
,
S.
,
Azmy
,
A. M.
,
Atiya
,
E. G.
,
Ullah
,
Z.
, and
Sharshir
,
S. W.
,
2020
, “
A Systematic Decision-Making Approach for Planning and Assessment of Hybrid Renewable Energy-Based Microgrid With Techno-Economic Optimization: A Case Study on an Urban Community in Egypt
,”
Sustain. Cities Soc.
,
54
, p.
102013
.
48.
Ali
,
F.
,
Ahmar
,
M.
,
Jiang
,
Y.
, and
AlAhmad
,
M.
,
2021
, “
A Techno-Economic Assessment of Hybrid Energy Systems in Rural Pakistan
,”
Energy
,
215
, p.
119103
.
49.
Al-Ghussain
,
L.
,
Ahmad
,
A. D.
,
Abubaker
,
A. M.
, and
Mohamed
,
M. A.
,
2021
, “
An Integrated Photovoltaic/Wind/Biomass and Hybrid Energy Storage Systems Towards 100% Renewable Energy Microgrids in University Campuses
,”
Sustain. Energy Technol. Assess.
,
46
, p.
101273
.
50.
Mellouk
,
L.
,
Ghazi
,
M.
,
Aaroud
,
A.
,
Boulmalf
,
M.
,
Benhaddou
,
D.
, and
Zine-Dine
,
K.
,
2019
, “
Design and Energy Management Optimization for Hybrid Renewable Energy System—Case Study: Laayoune Region
,”
Renew. Energy
,
139
, pp.
621
634
.
51.
Shboul
,
B.
,
AL-Arfi
,
I.
,
Michailos
,
S.
,
Ingham
,
D.
,
AL-Zoubi
,
O. H.
,
Ma
,
L.
,
Hughes
,
K.
, and
Pourkashanian
,
M.
,
2021
, “
Design and Techno-Economic Assessment of a New Hybrid System of a Solar Dish Stirling Engine Instegrated With a Horizontal Axis Wind Turbine for Microgrid Power Generation
,”
Energy Convers. Manage.
,
245
, p.
114587
.
52.
Elkadeem
,
M. R.
,
Wang
,
S.
,
Sharshir
,
S. W.
, and
Atia
,
E. G.
,
2019
, “
Feasibility Analysis and Techno-Economic Design of Grid-Isolated Hybrid Renewable Energy System for Electrification of Agriculture and Irrigation Area: A Case Study in Dongola, Sudan
,”
Energy Convers. Manage.
,
196
, pp.
1453
1478
.
53.
Das
,
B. K.
,
Alotaibi
,
M. A.
,
Das
,
P.
,
Islam
,
M. S.
,
Das
,
S. K.
, and
Hossain
,
M. A.
,
2021
, “
Feasibility and Techno-Economic Analysis of Stand-Alone and Grid-Connected PV/Wind/Diesel/Batt Hybrid Energy System: A Case Study
,”
Energy Strategy Rev.
,
37
, p.
100673
.
54.
Naderipour
,
A.
,
Ramtin
,
A. R.
,
Abdullah
,
A.
,
Marzbali
,
M. H.
,
Nowdeh
,
S. A.
, and
Kamyab
,
H.
,
2022
, “
Hybrid Energy System Optimization With Battery Storage for Remote Area Application Considering Loss of Energy Probability and Economic Analysis
,”
Energy
,
239
, p.
122303
.
55.
Jahannoosh
,
M.
,
Nowdeh
,
S. A.
,
Naderipour
,
A.
,
Kamyab
,
H.
,
Davoudkhani
,
I. F.
, and
Jaromír Klemeš
,
J.
,
2021
, “
New Hybrid Meta-Heuristic Algorithm for Reliable and Cost-Effective Designing of Photovoltaic/Wind/Fuel Cell Energy System Considering Load Interruption Probability
,”
J. Cleaner Prod.
,
278
, p.
123406
.
56.
Li
,
J.
,
Liu
,
P.
, and
Li
,
Z.
,
2020
, “
Optimal Design and Techno-Economic Analysis of a Solar-Wind-Biomass Off-Grid Hybrid Power System for Remote Rural Electrification: A Case Study of West China
,”
Energy
,
208
, p.
118387
.
57.
El-Sattar
,
H. A.
,
Sultan
,
H. M.
,
Kamel
,
S.
,
Khurshaid
,
T.
, and
Rahmann
,
C.
,
2021
, “
Optimal Design of Stand-Alone Hybrid PV/Wind/Biomass/Battery Energy Storage System in Abu-Monqar, Egypt
,”
J. Energy Storage
,
44
, p.
103336
.
58.
Cai
,
W.
,
Li
,
X.
,
Maleki
,
A.
,
Pourfayaz
,
F.
,
Rosen
,
M. A.
,
Nazari
,
M. A.
, and
Bui
,
D. T.
,
2020
, “
Optimal Sizing and Location Based on Economic Parameters for an Off-Grid Application of a Hybrid System With Photovoltaic, Battery and Diesel Technology
,”
Energy
,
201
, p.
117480
.
59.
Emad
,
D.
,
El-Hameed
,
M. A.
, and
El-Fergany
,
A. A.
,
2021
, “
Optimal Techno-Economic Design of Hybrid PV/Wind System Comprising Battery Energy Storage: Case Study for a Remote Area
,”
Energy Convers. Manage.
,
249
, p.
114847
.
60.
Diab
,
A. A. Z.
,
Sultan
,
H. M.
, and
Kuznetsov
,
O. N.
,
2019
, “
Optimal Sizing of Hybrid Solar/Wind/Hydroelectric Pumped Storage Energy System in Egypt Based on Different Meta-Heuristic Techniques
,”
Environ. Sci. Pollut. Res.
,
27
, pp.
32318
32340
.
61.
Arévalo
,
P.
,
Eras-Almeida
,
A. A.
,
Cano
,
A.
,
Jurado
,
F.
, and
Egido-Aguilera
,
M. A.
,
2022
, “
Planning of Electrical Energy for the Galapagos Islands Using Different Renewable Energy Technologies
,”
Electr. Power Syst. Res.
,
203
, p.
107660
.
62.
Toopshekan
,
A.
,
Yousefi
,
H.
, and
Astaraei
,
F. R.
,
2020
, “
Technical, Economic, and Performance Analysis of a Hybrid Energy System Using a Novel Dispatch Strategy
,”
Energy
,
213
, p.
118850
.
63.
Das
,
B. K.
,
Tushar
,
M. S. H. K.
, and
Hassan
,
R.
,
2021
, “
Techno-Economic Optimisation of Stand-Alone Hybrid Renewable Energy Systems for Concurrently Meeting Electric and Heating Demand
,”
Sustain. Cities Soc.
,
68
, p.
102763
.
64.
Ali
,
M.
,
Wazir
,
R.
,
Imran
,
K.
,
Ullah
,
K.
,
Janjua
,
A. K.
,
Ulasyar
,
A.
,
Khattak
,
A.
, and
Guerrero
,
J. M.
,
2021
, “
Techno-Economic Assessment and Sustainability Impact of Hybrid Energy Systems in Gilgit-Baltistan, Pakistan
,”
Energy Rep.
,
7
, pp.
2546
2562
.
65.
NASA’s Surface Solar Energy Data Set
, http://eosweb.larc.nasa.gov/sse
66.
Detailed Project Report for Biogas Power Plant + Organic Fertilizer Unit in Namakkal District, Tamil Nadu
, https://www.devalt.org/images/L2_ProjectPdfs/Detailed_project_report_for_biogas_power_plant.pdf?Oid=66
67.
Baredar
,
P.
,
Khare
,
V.
, and
Nema
,
S.
,
2020
,
Design and Optimization of Biogas Energy Systems
,
Academic Press
,
London
.
68.
Singh
,
S.
,
Singh
,
M.
, and
Kaushik
,
S. C.
,
2016
, “
Feasibility Study of an Islanded Microgrid in Rural Area Consisting of PV, Wind, Biomass and Battery Energy Storage System
,”
Energy Convers. Manage.
,
128
, pp.
178
190
.
69.
Adefarati
,
T.
,
Obikoya
,
G. D.
,
Onaolapo
,
A. K.
, and
Njepu
,
A.
,
2021
, “
Design and Analysis of a Photovoltaic-Battery—Methanol-Diesel Power System
,”
Int. Trans. Electr. Energy Syst.
,
31
(
3
), p.
e12800
.
70.
Kemmoku
,
Y.
,
Ishikawa
,
K.
,
Nakagawa
,
S.
,
Kawamoto
,
T.
, and
Sakakibara
,
T.
,
2001
, “
Life Cycle CO2 Emissions of a Photovoltaic/Wind/Diesel Generating System
,”
Electr. Eng. Jpn.
,
138
(
2
), pp.
14
23
.
71.
Emilsson
,
E.
, and
Dahllof
,
L.
,
2019
, “
Status 2019 on Energy Use, CO2 Emissions, Use of Metals, Products Environmental Footprint, and Recycling
,” Report Number C 444, IVL Swedish Environmental Research Institute 2019, ISBN 978-91-7883-112-8.
72.
Huawei Technologies Co. Ltd.
,
2020
, “
Product Carbon Footprint Report
,” Report Number SYBH (G-L) 07251691-06,
Reliability Laboratory of Huawei Technologies Co. Ltd
.
73.
Liebetrau
,
J.
,
Kornatz
,
P.
,
Baier
,
U.
,
Wall
,
D.
, and
Murphy
,
J. D.
,
2020
, “
Integration of Biogas Systems Into the Energy System: Technical Aspects of Flexible Plant Operation
,” Murphy, J. D. (Ed.), IEA Bioenergy Task 37, 8, https://www.ieabioenergy.com/wp-content/uploads/2020/09/Integration-of-biogas-systems-into-the-energy-system-Report.pdf
74.
Baghaee
,
H. R.
,
Mirsalim
,
M.
,
Gharehpetian
,
G. B.
, and
Talebi
,
H. A.
,
2016
, “
Reliability/Cost-Based Multi-Objective Pareto Optimal Design of Stand-Alone Wind/PV/FC Generation Microgrid System
,”
Energy
,
115
(
Nov.
), pp.
1022
1041
.
75.
Goel
,
S.
, and
Sharma
,
R.
,
2018
, “
Optimal Sizing of a Biomass–Biogas Hybrid System for Sustainable Power Supply to a Commercial Agricultural Farm in Northern Odisha, India
,”
Environ. Dev. Sustain.
,
21
(
5
), pp.
2297
2319
.
76.
Reges
,
J. P.
,
Carvalho
,
P. C. M.
,
de Araújo
,
J. C.
, and
Carneiro
,
T.
,
2022
, “
Sizing Methodology of Floating Photovoltaic Plants in Dams of Semi-Arid Areas
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041003
.
77.
Yue
,
C.
,
Gao
,
P.
,
Xu
,
Y.
, and
Schaefer
,
L. A.
,
2022
, “
Investigation on a Solar Thermal Power Plant With a Packed Bed Heat Storage Unit
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041004
.
78.
Taoufik
,
B.
, and
Abdelmajid
,
J.
,
2022
, “
Feasibility Study of Long-Term Dual Tank Photovoltaic/Thermal Indirect Parallel Solar-Assisted Heat Pump Systems
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041006
.
79.
Sorbet
,
F. J.
,
Fernandez-Peruchena
,
C.
,
Zaversky
,
F.
,
Chakroun
,
W.
,
Alotaibi
,
S. A.
,
Ahmed
,
M.
,
Sanchez
,
M.
, and
García-Barberena
,
J.
,
2022
, “
Performance Assessment of Seawater, Wet and Dry Cooling in a 50-MW Parabolic Trough Collectors Concentrated Solar Power Plant in Kuwait
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041007
.
80.
Siram
,
O.
,
Kesharwani
,
N.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2022
, “
Aerodynamic Design and Wind Tunnel Tests of Small-Scale Horizontal-Axis Wind Turbines for Low Tip Speed Ratio Applications
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041009
.
81.
Alshahrani
,
S.
, and
Engeda
,
A.
,
2020
, “
Performance Analysis of a Solar–Biogas Hybrid Micro Gas Turbine for Power Generation
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021007
.
You do not currently have access to this content.