Abstract

Large-scale parabolic trough collectors (PTCs) are generally installed in flat, open areas. Their specific costs ($/m2) are dependent on wind load-based structural design factors. To help estimate these wind loads, validated numerical simulations were used to develop similarity relations for large-scale PTCs. First, similarity relations of wind pressure, force, and lift/drag coefficients were deduced between a full-sized model (FM) and a scaled-down experimental similarity model. Second, the wind loads on the similarity model were simulated with a computational model to analyze the pressure distributions and aerodynamic performance under different wind speeds and pitch angles. Third, the computational method was extended to compute wind loads on a LS-2 collector (a commercial-scale PTC designed by LUZ International Ltd). The numerical results had a close agreement with the experiment results, on the whole, achieving a mean relative error in the drag coefficients of 5.1%, 3.8% in the lift coefficients and 5.0% in the moment coefficients, which indicated that the simulation model was valid. Further, compared with the shear stress transport model for the atmospheric boundary layer (ABL) along with large eddy simulations for the ABL, the k–ɛ turbulence model has better accuracy. Finally, practical similarity equations were proposed which can be used to estimate the wind loads on a range of PTC designs in a wide range of conditions. The mean relative error of these practical similarity equations was found to be within 12.0%. Overall, this study reports a validated set of similarity equations that can be used to bypass costly numerical simulation and/or wind tunnel testing for the estimation of wind loads on the large-scale PTCs (e.g., the EuroTrough) installed in flat, open areas.

References

1.
Paetzold
,
J.
,
Cochard
,
S.
,
Vassallo
,
A.
, and
Fletcher
,
D. F.
,
2014
, “
Wind Engineering Analysis of Parabolic Trough Solar Collectors: The Effects of Varying the Trough Depth
,”
J. Wind Eng. Ind. Aerod.
,
135
, pp.
118
128
.
2.
Bany Mousa
,
O.
,
Taylor
,
R. A.
, and
Shirazi
,
A.
,
2019
, “
Multi-objective Optimization of Solar Photovoltaic and Solar Thermal Collectors for Industrial Rooftop Applications
,”
Energ. Convers. Manage.
,
195
, pp.
392
408
.
3.
Li
,
Q.
,
Shirazi
,
A.
,
Zheng
,
C.
,
Rosengarten
,
G.
,
Scott
,
J. A.
, and
Taylor
,
R. A.
,
2016
, “
Energy Concentration Limits in Solar Thermal Heating Applications
,”
Energy
,
96
, pp.
253
267
.
4.
Weerasuriya
,
A. U.
,
2010
, “
Strategies for Adopting New Trends In Wind Load Evaluation on Structures
,”
MSc. dissertation
,
University of Moratuwa
,
Moratuwa, Western Province, Sri Lanka
.
5.
Aqachmar
,
Z.
,
Allouhi
,
A.
,
Jamil
,
A.
,
Gagouch
,
B.
, and
Kousksou
,
T.
,
2019
, “
Parabolic Trough Solar Thermal Power Plant Noor I in Morocco
,”
Energy
,
178
, pp.
572
584
.
6.
Hoseinzadeh
,
H.
,
Kasaeian
,
A.
, and
Behshad Shafii
,
M.
,
2018
, “
Geometric Optimization of Parabolic Trough Solar Collector Based on the Local Concentration Ratio Using the Monte Carlo Method
,”
Energ. Convers. Manage.
,
175
, pp.
278
287
.
7.
Bany Mousa
,
O. M.
, and
Taylor
,
R. A.
,
2019
, “
A Broad Comparison of Solar Photovoltaic and Thermal Technologies for Industrial Heating Applications
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011002
.
8.
Bany Mousa
,
O.
,
Kara
,
S.
, and
Taylor
,
R. A.
,
2019
, “
Comparative Energy and Greenhouse Gas Assessment of Industrial Rooftop-Integrated PV and Solar Thermal Collectors
,”
Appl. Energ.
,
241
, pp.
113
123
.
9.
Paetzold
,
J.
,
Cochard
,
S.
,
Fletcher
,
D. F.
, and
Vassallo
,
A.
,
2015
, “
Wind Engineering Analysis of Parabolic Trough Collectors to Optimise Wind Loads and Heat Loss
,”
Energ. Procedia
,
69
, pp.
168
177
.
10.
Hachicha
,
A. A.
,
Rodríguez
,
I.
, and
Oliva
,
A.
,
2014
, “
Wind Speed Effect on the Flow Field and Heat Transfer Around a Parabolic Trough Solar Collector
,”
Appl. Energ.
,
130
, pp.
200
211
.
11.
Riffelmann
,
K. J.
,
Graf
,
D.
, and
Nava
,
P.
,
2011
, “
Ultimate Trough: The New Parabolic Trough Collector Generation for Large Scale Solar Thermal Power Plants
,”
ASME 2011 5th International Conference on Energy Sustainability
,
Washington, DC
,
Aug. 7–10
, pp.
789
794
.
12.
Yang
,
M. C.
,
Zhu
,
Y. Z.
,
Fu
,
W.
,
Pearce
,
G.
, and
Taylor
,
R. A.
,
2018
, “
Linear Solar Concentrator Structural Optimization Using Variable Beam Cross Sections
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061006
.
13.
Hachicha
,
A. A.
,
Rodríguez
,
I.
,
Castro
,
J.
, and
Oliva
,
A.
,
2013
, “
Numerical Simulation of Wind Flow Around a Parabolic Trough Solar Collector
,”
Appl. Energ.
,
107
, pp.
426
437
.
14.
Gong
,
B.
,
Wang
,
Z.
,
Li
,
Z.
,
Zhang
,
J.
, and
Fu
,
X.
,
2012
, “
Field Measurements of Boundary Layer Wind Characteristics and Wind Loads of a Parabolic Trough Solar Collector
,”
Sol. Energy
,
86
(
6
), pp.
1880
1898
.
15.
Andre
,
M.
,
Mier-Torrecilla
,
M.
, and
Wüchner
,
R.
,
2015
, “
Numerical Simulation of Wind Loads on a Parabolic Trough Solar Collector Using Lattice Boltzmann and Finite Element Methods
,”
J. Wind Eng. Ind. Aerod.
,
146
(
2015
), pp.
185
194
.
16.
Sun
,
H.
,
Gong
,
B.
, and
Yao
,
Q.
,
2014
, “
A Review of Wind Loads on Heliostats and Trough Collectors
,”
Renew. Sust. Energy. Rev.
,
32
, pp.
206
221
.
17.
Zemler
,
M. K.
,
Bohl
,
G.
,
Rios
,
O.
, and
Boetcher
,
S. K. S.
,
2013
, “
Numerical Study of Wind Forces on Parabolic Solar Collectors
,”
Renew. Energy
,
60
, pp.
498
505
.
18.
Peterka
,
J.
, and
Cermak
,
J.
,
2021
, “
Mean Wind Forces on Parabolic-Trough Solar Collectors
”, https://www.osti.gov/biblio/5275459
19.
Randall
,
D. E.
,
Tate
,
R. E.
, and
Powers
,
D. A.
,
1982
, “
Experimental Results of Pitching Moment Tests on Parabolic-Trough Solar-Collector Array Configurations
,”
ASME J. Sol. Energy Eng.
,
106
(
2
), pp.
223
230
.
20.
Hosoya
,
N.
,
Peterka
,
J.
,
Gee
,
R.
, and
Kearney
,
D.
,
2021
, “
Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001 August 2003
,” https://www.osti.gov/biblio/929597-hxyIFG/
21.
Juretic
,
F.
, and
Kozmar
,
H.
,
2013
, “
Computational Modeling of the Neutrally Stratified Atmospheric Boundary Layer Flow Using the Standard k–ɛ Turbulence Model
,”
J. Wind Eng. Ind. Aerod
,
115
, pp.
112
120
.
22.
Richards
,
P.J.
, and
Hoxey
,
R. P.
,
1993
, “
Appropriate Boundary Conditions for Computational Wind Engineering Models Using the k-ε‌ Turbulence Model
,”
J. Wind Eng. Ind. Aerod.
,
46-47
, pp.
145
153
.
23.
Richards
,
P.
, and
Norris
,
S.
,
2011
, “
Appropriate Boundary Conditions for Computational Wind Engineering Models Revisited
,”
J. Wind. Eng. Ind. Aerod.
,
99
(
4
), pp.
257
266
.
24.
Guillas
,
S.
,
Glover
,
N.
, and
Malki-Epshtein
,
L.
,
2014
, “
Bayesian Calibration of the Constants of the k–ɛ Turbulence Model for a CFD Model of Street Canyon Flow
,”
Comput. Method Appl. Mech. Eng.
,
279
, pp.
536
553
.
25.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2019
, “
On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines
,”
Energy
,
180
, pp.
838
857
.
26.
Hachicha
,
A. A.
,
Rodríguez
,
I.
,
Lehmkuhl
,
O.
, and
Oliva
,
A.
,
2014
, “
On the CFD&HT of the Flow Around a Parabolic Trough Solar Collector Under Real Working Conditions
,”
Energ. Procedia
,
49
, pp.
1379
1390
.
27.
Mier-Torrecilla
,
M.
,
Herrera
,
E.
, and
Doblaré
,
M.
,
2014
, “
Numerical Calculation of Wind Loads Over Solar Collectors
,”
Energ. Procedia
,
49
, pp.
163
173
.
28.
Naeeni
,
N.
, and
Yaghoubi
,
M.
,
2007
, “
Analysis of Wind Flow Around a Parabolic Collector (1) Fluid Flow
,”
Renew. Energ
,
32
(
11
), pp.
1898
1916
.
29.
Zhang
,
L.
,
Yang
,
M. C.
,
Zhu
,
Y. Z.
, and
Chen
,
H. J.
,
2015
, “
Numerical Study and Optimization of Mirror Gap Effect on Wind Load on Parabolic Trough Solar Collectors
,”
Energ. Procedia
,
69
, pp.
233
241
.
30.
Bekhit
,
A.
,
Khalil
,
A.
,
Kaseb
,
S.
, and
Othman
,
H.
,
2012
, “
HelioTrough Thermal Performance Compared to EuroTrough
,”
Proceedings of the 2012 First International Conference on Renewable Energies and Vehicular Technology
,
Nabeul, Tunisia
,
Mar. 26–28
, pp.
344
347
.
31.
Protsenko
,
V.
, and
Danilov
,
F.
,
2014
, “
Application of Dimensional Analysis and Similarity Theory for Simulation of Electrode Kinetics Described by the Marcus–Hush–Chidsey Formalism
,”
Electroanal. Chem.
,
669
, pp.
50
54
.
32.
Xu
,
G.
,
Li
,
Y.
,
Deng
,
H.
, and
Yu
,
X.
,
2015
, “
The Application of Similarity Theory for Heat Transfer Investigation in Rotational Internal Cooling Channel
,”
Int. J. Heat Mass Transfer
,
85
, pp.
98
109
.
33.
Wang
,
L.
,
Zuo
,
X.
,
Liu
,
H.
,
Yue
,
T.
,
Jia
,
X.
, and
You
,
J.
,
2019
, “
Flying Qualities Evaluation Criteria Design for Scaled-Model Aircraft Based on Similarity Theory
,”
Aerosp. Sci. Technol.
,
90
, pp.
209
221
.
34.
Pijush KK
,
I. M. C.
,
2007
,
Fluid Mechanics
, 4th ed.,
Academic Press
,
New York/London
.
35.
Jiri
,
B.
,
2015
,
Computational Fluid Dynamics Principles and Applications
, 4th ed.,
Elsevier
,
Germany/Sankt Augustin
. https://www.ebookee.net/PDF-Computational-Fluid-Dynamics-Principles-and-Applications-Third-Edition_3010797.html
36.
Launder
,
B.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
103
(
2
), pp.
456
460
.
37.
Seo
,
Y.
,
2013
, “
Effect of Hydraulic Diameter of Flow Straighteners on Turbulence Intensity in Square Wind Tunnel
,”
HVAC &R Res.
,
19
(
2
), pp.
141
147
.
38.
Harrisson
,
S.
,
2018
, “
The Downside of Dispersity: Why the Standard Deviation Is a Better Measure of Dispersion in Precision Polymerization
,”
Polym. Chem.
,
9
(
12
), pp.
1366
1370
.
39.
Yang
,
M.
,
Zhang
,
C.
,
L
,
Y.
,
Wang
,
Q.
,
Zhu
,
G.
,
Z
,
Y.
, and
Taylor
,
R. A.
,
2022
, “
A Coupled Structural-Optical Analysis of a Novel Umbrella Heliostat
,”
Sol. Energy
,
231
, pp.
880
888
.
40.
Reddy
,
K. S.
,
Singla
,
H.
, and
Tarnalli
,
N.
,
2019
, “
Gravity & Wind Load Analysis and Optical Study of Solar Parabolic Trough Collector with Composite Facets Using Optimized Modelling Approach
,”
Energy
,
189
, p.
116065
.
41.
Cameron
,
A. C.
, and
Windmeijer
,
F. A. G.
,
1997
, “
An R-Squared Measure of Goodness of Fit for Some Common Nonlinear Regression Models
,”
J. Econometrics
,
77
(
2
), pp.
329
342
.
42.
Lüpfert
,
E.
,
Geyer
,
M.
,
Schiel
,
W.
,
Esteban
,
A.
,
Osuna
,
R.
,
Zarza
,
E.
, and
Nava
,
P.
,
2001
, “
EuroTrough Design Issues and Prototype Testing at PSA
,”
Proceedings of the ASME International Solar Energy Conference
,
Washington, DC
,
Apr. 21–25
, pp.
387
391
.
43.
Klasing
,
F.
,
Hirsch
,
T.
,
Odenthal
,
C.
, and
Bauer
,
T.
,
2020
, “
Techno-economic Optimization of Molten Salt Concentrating Solar Power Parabolic Trough Plants With Packed-Bed Thermocline Tanks
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051006
.
44.
Uzair
,
M.
, and
Rehman
,
N. U.
,
2021
, “
Intercept Factor for a Beam-Down Parabolic Trough Collector
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061002
.
45.
Arunachala
,
U. C.
,
2020
, “
Experimental Study With Analytical Validation of Energy Parameters in Parabolic Trough Collector With Twisted Tape Insert
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031009
.
You do not currently have access to this content.