Abstract

The theory of a glazed transpired collector solar air heater in natural convection mode has been developed. This was aimed at generating a framework for the experimental study of the performance of the collector. The theory involved the definition of some of the collector’s main geometries, the formulation of the energy balance on the collector, and the driving forces within the collector. The dimensional analysis was then applied to the formulations to obtain relationships between important dimensionless groups. The theory of the glazed transpired collector in natural convection mode provides a basis for the development of the collector for application in the areas of space heating and crop drying. This type of collector provides a solution to the challenge of space heating and crop drying at locations where electricity is not available and photovoltaic power is not affordable. It could also contribute to energy savings since it requires no electricity to work.

References

1.
Ekechukwu
,
O. V.
, and
Norton
,
B.
,
1999
, “
Review of Solar-Energy Drying Systems III: Low Temperature Air-Heating Solar Collectors for Crop Drying Applications
,”
Energy Convers. Manage.
,
40
(
6
), pp.
657
667
.
2.
Jasim Mahmood
,
A.
,
2017
, “
Experimental Study of a Solar Air Heater With a New Arrangement of Transverse Longitudinal Baffles
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031004
.
3.
Nowzari
,
R.
,
Saygin
,
H.
, and
Aldabbagh
,
L. B. Y.
,
2021
, “
Evaluating the Performance of a Modified Solar Air Heater With Cover and Packed Mesh Layers
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011006
.
4.
Kutscher
,
C. F.
,
1996
, “
Transpired Solar Collector System: A Major Advance in Solar Heating
,”
Proceeding of the World Energy Engineering Congress
,
Atlanta, GA
,
Nov. 6–8
, pp.
1
9
.
5.
Walker
,
A.
,
Renne
,
D.
,
Bilo
,
S.
,
Kutscher
,
C.
,
Burch
,
J.
,
Balcomb
,
D.
,
Judkoff
,
R.
,
Warner
,
C.
,
King
,
R. J.
, and
Eiffert
,
P.
,
2003
, “
Advances in Solar Buildings
,”
ASME J. Solar Energy Eng.
,
125
(
3
), pp.
236
244
.
6.
Myhan
,
R.
,
Bieranowski
,
J.
,
Szwejkowski
,
Z.
, and
Sitnik
,
E.
,
2017
, “
The Effect of Local Meteorological Conditions on the Optimal Tilt Angle of a Solar Energy Collector—A Case Study in Poland
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
044501
.
7.
Rhee
,
S. J.
, and
Edwards
,
D. K.
,
1983
, “
Comparison of Test Results for Flat Plate, Transpired Flat Plate, Corrugated, and Transpired Corrugated Solar Air Heaters
,”
ASME J. Solar Energy Eng.
,
105
(
3
), pp.
231
236
.
8.
Vaziri
,
R.
,
Ilkan
,
M.
, and
Egelioglu
,
F.
,
2015
, “
Experimental Performance of Perforated Glazed Solar Air Heater and Unglazed Transpired Solar Air Heater
,”
Sol. Energy
,
119
, pp.
251
260
.
9.
Zheng
,
W.
,
Li
,
B.
,
Zhang
,
H.
,
You
,
S.
,
Li
,
Y.
, and
Ye
,
T. Z.
,
2016
, “
Thermal Characteristics of a Glazed Transpired Solar Collector With Perforating Corrugated Plate in Cold Regions
,”
Energy
,
109
, pp.
781
790
.
10.
Zheng
,
W.
,
Zhang
,
H.
,
You
,
S.
, and
Fu
,
Y.
,
2017
, “
Experimental Investigation of the Transpired Solar Air Collector and Metal Corrugated Packing Solar Air Collector
,”
Energies
,
10
(
3
), p.
302
.
11.
Sima
,
C.
,
Teodosiu
,
C.
,
Croitoru
,
C.
, and
Bode
,
F.
,
2021
, “
Analysis of Numerical and Experimental Results of a Solar Glazed Air Collector Configuration in Romania Climate
,”
7th Conference of Sustainable Solutions for Energy and Environment
,
Bucharest, Romania
,
Oct. 21–24
, IOP Conference Series: Earth and Environmental Science,
664
(
1
), pp.
12085
12091
.
12.
Jiang
,
Y.
,
Zhang
,
H.
,
Wang
,
Y.
,
You
,
S.
,
Wu
,
Z.
,
Fan
,
M.
,
Wang
,
L.
, and
Wei
,
S.
,
2021
, “
A Comparative Study on the Performance of a Novel Triangular Solar Air Collector With Tilted Transparent Cover Plate
,”
Sol. Energy
,
227
, pp.
224
235
.
13.
Khaki
,
M.
,
Shahsavar
,
A.
, and
Khanmohammadi
,
S.
,
2018
, “
Scenario-Based Multi-Objective Optimization of an Air-Based Building-Integrated Photovoltaic/Thermal System
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011003
.
14.
Jakhar
,
S.
,
Soni
,
M.
, and
Boehm
,
R. F.
,
2018
, “
Thermal Modelling of a Rooftop Photovoltaic/Thermal System With Earth Air Heat Exchanger for Combined Power and Space Heating
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031001
.
15.
Kutscher
,
C. F.
,
1994
, “
Heat Exchange Effectiveness and Pressure Drop for Air Flow Through Perforated Plates With and Without Crosswind
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
2
), pp.
391
236
.
16.
Van Decker
,
G. W. E.
,
Hollands
,
K. G. T.
, and
Brunger
,
A. P.
,
2001
, “
Heat-Exchange Relations for Unglazed Transpired Solar Collectors With Circular Holes on a Square or Triangular Pitch
,”
Solar Energy
,
71
(
1
), pp.
33
45
.
17.
Golneshan
,
A. A.
, and
Hollands
,
K. G. T.
,
2000
, “
Forced Convection Experiments on Slotted Transpired Plates
,”
Trans. Can. Soc. Mech. Eng.
,
24
(
1B
), pp.
335
348
.
18.
Ho
,
K. T. K.
, and
Loveday
,
D. L.
,
2002
, “
New Approach for Analyzing Solar Collectors Subjected to Unequal Front/Rear Ambient Temperatures: The Equivalent Ambient Temperature Concept, Part 1: Modelling
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
262
267
.
19.
Arulannandam
,
S. J.
,
Hollands
,
K. G. T.
, and
Brundrett
,
E.
,
2000
, “
A CFD Heat Transfer Analysis of the Transpired Solar Collector Under No-Wind Conditions
,”
Sol. Energy
,
67
(
1–3
), pp.
93
100
.
20.
Sparrow
,
E. M.
, and
Ortiz
,
M. C.
,
1982
, “
Heat Transfer Coefficients for the Upstream Face of a Perforated Plate Positioned Normal to an Oncoming Flow
,”
Int. J. Heat Mass Transfer
,
25
(
1
), pp.
127
135
.
21.
Andrews
,
G. E.
,
Bazdidi-Tehrani
,
F.
,
Hussain
,
C. I.
, and
Pearson
,
J. P.
,
1991
, “
Small Diameter Film Cooling Hole Heat Transfer: The Influence of the Hole Length
,”
Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition
,
Orlando, FL
,
June 3
, pp.
1
13
.
22.
Kreider
,
J. F.
, and
Kreith
,
F.
,
1977
,
Solar Heating and Cooling: Engineering, Practical Design and Economics
,
Prentice-Hall, Inc.
,
Englewood Cliffs
, pp.
164
169
.
23.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1980
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons, Inc
,
New York
, pp.
10
11
.
24.
Kutscher
,
C.
,
Christensen
,
C. B.
, and
Barker
,
G. M.
,
1993
, “
Unglazed Solar Transpired Collector: Heat Loss Theory
,”
ASME J. Sol. Energy Eng.
,
115
(
3
), pp.
182
188
.
25.
Gawlik
,
K. M.
, and
Kutscher
,
C. F.
,
2002
, “
Wind Heat Loss From Corrugated, Transpired Solar Collector
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
256
261
.
26.
Bilgen
,
E.
,
2000
, “
Passive Solar Wall Systems With Fins Attached on the Heated Wall Without Glazing
,”
ASME J. Sol. Energy Eng.
,
122
(
1
), pp.
30
34
.
27.
Brinkworth
,
B. J.
,
2002
, “
Coupling of Convective and Radiative Heat Transfer in PV Cooling Ducts
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
250
255
.
You do not currently have access to this content.