Abstract

In the present research, an investigational study on thermal performance of a mixed asphalt conical solar water heater (MACSWH) was analyzed under field conditions. The key target of the present research is to evaluate the dynamics of heat and performance of a conical solar collector with an attached mixed asphalt as an absorber plate. In the current experimental test setup, the mixed asphalt as an absorber plate with a diameter of 0.20 m and thickness of 0.05 m was set in the middle of the focal area for accumulating the solar radiation, reflecting from a polished zinc conical reflector. The aperture diameter of the MACSWH was 0.45 m with a concentration ratio of 2.20. The copper pipe had a total length of 2 m, and the inclination angle of the conical was fixed at 15 deg. The experimental results provide evidence that the mixed asphalt set as an absorber plate at the center of the focal area was an effective practical approach to improve the performance of a conical solar collector. This method raises the maximum percentage difference between inlet water temperature and outlet water temperature by approximately 47.27%, while the maximum temperatures of absorber plate, copper pipe, and efficacy are at 82 °C, 62 °C, and 72%, respectively.

References

1.
Department of Alternative Energy Development and Efficiency
,
2015
, “
Ministry of Energy, The Renewable and Alternative Energy Development Plan for 25 Percent in 10 Years (AEDP 2015–2036)
,”
Department of Alternative Energy Development and Efficiency, Ministry of Energy
,
Bangkok
.
2.
Esen
,
M.
, and
Yuksel
,
T.
,
2013
, “
Experimental Evaluation of Using Various Renewable Energy Sources for Heating a Greenhouse
,”
Energy Build.
,
65
, pp.
340
351
.
3.
Raisul Islam
,
M.
,
Sumathy
,
K.
, and
Ullah Khan
,
S.
,
2013
, “
Solar Water Heating Systems and Their Market Trends
,”
Renew. Sustain. Energy Rev.
,
17
, pp.
1
25
.
4.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
5.
Pukdum
,
J.
,
Phengpom
,
T.
, and
Sudasna
,
K.
,
2019
, “
Thermal Performance of Mixed Asphalt Solar Water Heater
,”
Int. J. Renew. Energy Res.
,
9
(
2
), pp.
712
720
.
6.
Puangsombut
,
W.
,
Nonthiworawong
,
D.
, and
Pukdum
,
J.
,
2020
, “
Thermal Performance of Integrated Collector Storage Solar Water Heater With Mixed Asphalt Absorber Plate
,”
J. Ind. Technol. Suan Sunandha Rajabhat Univ.
,
8
(
2
), pp.
48
57
.
7.
Zaim
,
E. H.
,
Farzan
,
H.
, and
Ameri
,
M.
,
2020
, “
Assessment of Pipe Configurations on Heat Dynamics and Performance of Pavement Solar Collectors: An Experimental and Numerical Study
,”
Sustain. Energy Technol. Assess.
,
37
, p.
100635
.
8.
Farzan
,
H.
,
Zaim
,
E. H.
, and
Ameri
,
M.
,
2020
, “
Study on Effect of Glazing on Performance and Heat Dynamics of Asphalt Solar Collectors: An Experimental Study
,”
Sol. Energy
,
202
, pp.
429
437
.
9.
Masoumi
,
A.
,
Erfan
,
T. A.
, and
Golneshan
,
A.
,
2020
, “
Investigation on Performance of an Asphalt Solar Collector: CFD Analysis, Experimental Validation and Neural Network Modeling
,”
Sol. Energy
,
207
, pp.
703
719
.
10.
Kaminski
,
D. A.
,
1989
, “
Radiative Transfer From a Gray, Absorbing-Emitting, Isothermal Medium in a Conical Enclosure
,”
ASME J. Sol. Energy Eng.
,
111
(
4
), pp.
324
329
.
11.
Liu
,
Z.-H.
,
Hu
,
R.-L.
,
Lu
,
L.
,
Zhao
,
F.
, and
Xiao
,
H.-S.
,
2013
, “
Thermal Performance of an Open Thermosyphon Using Nanofluid for Evacuated Tubular High Temperature Air Solar Collector
,”
Energy Convers. Manage.
,
73
, pp.
135
143
.
12.
Wang
,
P.-Y.
,
Guan
,
H.-Y.
,
Liu
,
Z.-H.
,
Wang
,
G.-S.
,
Zhao
,
F.
, and
Xiao
,
H.-S.
,
2014
, “
High Temperature Collecting Performance of a New All-Glass Evacuated Tubular Solar Air Heater With U-Shaped Tube Heat Exchanger
,”
Energy Convers. Manage.
,
77
, pp.
315
323
.
13.
Sauceda
,
D.
,
Velázquez
,
N.
,
Beltrán
,
R.
, and
Quintero
,
M.
,
2008
, “
Thermal Analysis of a Conical Receiver in a Parabolloid Dish to be Used as Generator in an Advanced Solar Thermal Cooling System
,”
Joint National Solar Energy Week, Proceedings of the ANES/ASME Solar Joint 2006 XXXth
,
Puerto de Veracruz, Mexico
,
Oct. 2–6, 2006
, pp.
59
65
.
14.
Hussain
,
I. M.
, and
Lee
,
G. H.
,
2014
, “
Thermal Performance Evaluation of a Conical Solar Water Heater Integrated With a Thermal Storage System
,”
Energy Convers. Manage.
,
87
, pp.
267
273
.
15.
Hussain
,
I. M.
, and
Lee
,
G. H.
,
2016
, “
Performance Comparison and Model Validation of a Conical Solar Reflector and a Linear Fresnel Concentrator
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061014
.
16.
Hussain
,
I. M.
,
Lee
,
G. H.
, and
Kim
,
J. T.
,
2017
, “
Experimental Validation of Mathematical Models of Identical Aluminum and Stainless Steel Engineered Conical Solar Collectors
,”
Renew. Energy
,
112
, pp.
44
52
.
17.
Hussain
,
I. M.
, and
Lee
,
G. H.
,
2017
, “
Numerical and Experimental Heat Transfer Analyses of a Novel Concentric Tube Absorber Under Non-Uniform Solar flux Condition
,”
Renew. Energy
,
103
, pp.
49
57
.
18.
Lee
,
G. H.
,
2018
, “
Construction of Conical Solar Concentrator With Performance Evaluation
,”
Energy Procedia
,
153
, pp.
137
142
.
19.
Schneider
,
F. P.
,
Nogueira
,
C. E. C.
,
Toniazzo
,
F.
,
Souza
,
S. N. M.
,
Siqueira
,
J. A. C.
,
Nogueira
,
I. L.
, and
Santos
,
D. R.
,
2018
, “
Characterization of a Water Heating System Using Solar Collector With Conical Concentrator
,”
J. Agric. Sci.
,
10
(
12
), pp.
405
425
.
20.
Na
,
M. S.
,
Hwang
,
J. Y.
,
Hwang
,
S. G.
,
Lee
,
J. H.
, and
Lee
,
G. H.
,
2018
, “
Design and Performance Analysis of Conical Solar Concentrator
,”
J. Biosyst. Eng.
,
43
(
1
), pp.
22
29
.
21.
Pavlovic
,
S.
,
Loni
,
R.
,
Bellos
,
E.
,
Vasiljević
,
D.
,
Najafi
,
G.
, and
Kasaeian
,
A.
,
2018
, “
Comparative Study of Spiral and Conical Cavity Receivers for a Solar Dish Collector
,”
Energy Convers. Manage.
,
178
, pp.
111
122
.
22.
Yan
,
J.
,
Cheng
,
Z.
, and
Peng
,
Y.
,
2018
, “
Effects of Geometrical Parameters of a Dish Concentrator on the Optical Performance of a Cavity Receiver in a Solar Dish-Stirling System
,”
Int. J. Energy Res.
,
42
(
6
), pp.
2152
2168
.
23.
Turrini
,
S.
,
Bettonte
,
M.
,
Eccher
,
M.
,
Grigiante
,
M.
,
Miotello
,
A.
, and
Brusa
,
R. S.
,
2018
, “
An Innovative Small-Scale Prototype Plant Integrating a Solar Dish Concentrator With a Molten Salt Storage System
,”
Renew. Energy
,
123
, pp.
150
161
.
24.
Phiraphat
,
S.
,
Prommas
,
R.
, and
Puangsombut
,
W.
,
2017
, “
Experimental Study of Natural Convection in PV Roof Solar Collector
,”
Int. Commun. Heat Mass Transfer
,
2017
(
89
), pp.
31
38
.
You do not currently have access to this content.