Abstract

Solar energy will be the most sought-after source for generating electricity shortly because of its availability in abundance and pollution-free nature. Bifacial photovoltaic (PV) technology increases the power output through the albedo effect. However, the major drawback of PV-based power is that the efficiency is very low at less than 25%. The study focuses on the impact of surface color to explore the possibilities of enhancing the efficiency of solar modules considering the different terrace surfaces available in the residential region. The proposed work is one such attempt where the study is mainly focused on the impact of the surface properties on the extraction of electricity from the solar module without adopting the active techniques. A detailed study on different colors like black, green, and white is carried out. The study observed that the white surface improves the albedo effect toward the rear surface of the module, thereby improving the energy production factor (EPF) and higher life cycle conversion efficiency (LCE). It is observed that there is a 4.8% increase in the average efficiency when using white as ground cover as compared to normal reference ground. The comparative study is also carried out for various lifetime periods (T) like 10, 15, and 20 years. Calculated the exergetic cost by considering operating periods like 15, 20, 25, and 30 years with 2%, 5%, and 10% interest rates, and it is observed that after 30 years of operation at a 2% interest rate, energetic cost reached its highest value.

References

1.
Kabeel
,
A. E.
,
Muthu Manokar
,
A.
,
Sathyamurthy
,
R.
,
Prince Winston
,
D.
,
El-Agouz
,
S. A.
, and
Chamkha
,
A. J.
,
2019
, “
A Review on Different Design Modifications Employed in Inclined Solar Still for Enhancing the Productivity
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031007
.
2.
Lo
,
C. K.
,
Lim
,
Y. S.
,
Wong
,
M. C.
, and
Tian
,
Y. K.
,
2014
, “
The Application of Novel Platinum-Reinforced Tin-Silver-Copper Solder to Bifacial Photovoltaic Module for Improvement of Yield and Reliability
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
041001
.
3.
Appelbaum
,
J.
,
2016
, “
View Factors to Grounds of Photovoltaic Collectors
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
064501
.
4.
Fathi
,
N. Y.
, and
Samer
,
A.
,
2016
, “
View Factors of Flat Solar Collectors Array in Flat, Inclined, and Step-Like Solar Fields
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061005
.
5.
Castillo-Aguilella
,
J. E.
, and
Hauser
,
P. S.
,
2016
, “
Multi-Variable Bifacial Photovoltaic Module Test Results and Best-Fit Annual Bifacial Energy Yield Model
,”
IEEE Access
,
4
, pp.
498
506
.
6.
Yu
,
B.
,
Song
,
D.
,
Sun
,
Z.
,
Liu
,
K.
,
Zhang
,
Y.
,
Rong
,
D.
, and
Liu
,
L.
,
2016
, “
A Study on Electrical Performance of N-Type Bifacial PV Modules
,”
Sol. Energy
,
137
, pp.
129
133
.
7.
Yusufoglu
,
U. A.
,
Pletzer
,
T. M.
,
Koduvelikulathu
,
L. J.
,
Comparotto
,
C.
,
Kopecek
,
R.
, and
Kurz
,
H.
,
2015
, “
Analysis of the Annual Performance of Bifacial Modules and Optimization Methods
,”
IEEE J. Photovolt.
,
5
(
1
), pp.
320
328
.
8.
Appelbaum
,
J.
,
2016
, “
Bifacial Photovoltaic Panels Field
,”
Renewable Energy
,
85
, pp.
338
343
.
9.
Siddique
,
A.
, and
Biswas
,
S. K.
,
2015
, “
Performance Analysis of Bifacial PV Module for the Integration in Static Sea Shell Concentrator
,”
International Conference on Electrical & Electronic Engineering (ICEEE)
,
IEEE
,
Turkey
,
Apr. 28–29
, pp.
65
68
.
10.
Poulek
,
V.
,
Khudysh
,
A.
, and
Libra
,
M.
,
2015
, “
Innovative Low Concentration PV Systems With Bifacial Solar Panels
,”
Sol. Energy
,
120
, pp.
113
116
.
11.
Lim
,
Y. S.
,
Lo
,
C. K.
,
Kee
,
S. Y.
,
Ewe
,
H. T.
, and
Faidz
,
A. R.
,
2014
, “
Design and Evaluation of Passive Concentrator and Reflector Systems for Bifacial Solar Panel on a Highly Cloudy Region—A Case Study in Malaysia
,”
Renewable Energy
,
63
, pp.
415
425
.
12.
João
,
G.
,
Davidsson
,
H.
,
Christian
,
G.
,
Stefan
,
M.
, and
Björn
,
K.
,
2013
, “
Testing Bifacial PV Cells in Symmetric and Asymmetric Concentrating CPC Collectors
,”
Engineering
,
5
(
1B
), pp.
185
190
.
13.
Edmonds
,
I. R.
,
1992
, “
The Performance of Bifacial Solar Cells in Prism-Coupled Compound Parabolic Concentrators
,”
Sol. Energy
,
48
(
4
), pp.
235
238
.
14.
Edmonds
,
I. R.
,
1990
, “
The Performance of Bifacial Solar Cells in Static Solar Concentrators
,”
Sol. Energy Mater.
,
21
(
2–3
), pp.
173
190
.
15.
Edmonds
,
I. R.
,
Cowling
,
I. R.
, and
Chan
,
H. M.
,
1987
, “
The Design and Performance of Liquid Filled Stationary Concentrators for Use With Photovoltaic Cells
,”
Sol. Energy
,
39
(
2
), pp.
113
122
.
16.
Lo
,
C. K.
,
Lim
,
Y. S.
, and
Rahman
,
F. A.
,
2015
, “
New Integrated Simulation Tool for the Optimum Design of Bifacial Solar Panel With Reflectors on a Specific Site
,”
Renewable Energy
,
81
, pp.
293
307
.
17.
Moehlecke
,
A.
,
Febras
,
F. S.
, and
Zanesco
,
I.
,
2013
, “
Electrical Performance Analysis of PV Modules With Bifacial Silicon Solar Cells and White Diffuse Reflector
,”
Sol. Energy
,
96
, pp.
253
262
.
18.
Abdallah
,
M.
,
Khaiyat
,
A.
,
Basaheeh
,
A.
,
Kotsovos
,
K.
,
Ballard
,
I.
,
AlSaggaf
,
A.
,
Gereige
,
I.
, and
Théron
,
R.
,
2021
, “
Soiling Loss Rate Measurements of Photovoltaic Modules in a Hot and Humid Desert Environment
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031005
.
19.
Chudinzow
,
D.
,
Haas
,
J.
,
Díaz-Ferrán
,
G.
,
Moreno-Leiva
,
S.
, and
Eltrop
,
L.
,
2019
, “
Simulating the Energy Yield of a Bifacial Photovoltaic Power Plant
,”
Sol. Energy
,
183
, pp.
812
822
.
20.
Obara
,
S.
,
Konno
,
D.
,
Utsugi
,
Y.
, and
Morel
,
J.
,
2014
, “
Analysis of Output Power and Capacity Reduction in Electrical Storage Facilities by Peak Shift Control of PV System With Bifacial Modules
,”
Appl. Energy
,
128
, pp.
35
48
.
21.
Yusufoglu
,
U. A.
,
Lee
,
T. H.
,
Pletzer
,
T. M.
,
Halm
,
A.
,
Koduvelikulathu
,
L. J.
,
Comparotto
,
C.
,
Kopecek
,
R.
, and
Kurz
,
H.
,
2014
, “
Simulation of Energy Production by Bifacial Modules With Revision of Ground Reflection
,”
Energy Procedia
,
55
, pp.
389
395
.
22.
Alonso
,
J.
,
Diaz
,
V.
,
Hernandez
,
M.
,
Bercero
,
F.
,
Canizo
,
C.
,
Pou
,
I.
,
Mohedano
,
R.
, et al
,
2002
, “
A New Static Concentrator PV Module With Bifacial Cells for Integration on Facades: The PV VENETIAN Store
,”
Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference
,
IEEE
,
New Orleans, LA,
May 19–24,
pp.
1584
1587
.
23.
Kreinin
,
L.
,
Bordin
,
N.
,
Karsenty
,
A.
,
Drori
,
A.
,
Grobgeld
,
D.
, and
Eisenberg
,
N.
,
2010
, “
PV Module Power Gain Due to Bifacial Design. Preliminary Experimental and Simulation Data
,”
2010 35th IEEE Photovoltaic Specialists Conference
,
IEEE
,
Honolulu, HI,
June 20–25
, pp.
002171
002175
.
24.
Alonso García
,
M. C.
, and
Balenzategui
,
J. L.
,
2010
, “
Estimation of Photovoltaic Module Yearly Temperature and Performance Based on Nominal Operation Cell Temperature Calculations
,”
Renewable Energy
,
29
(
12
), pp.
1997
2010
.
25.
Li
,
B.
,
Christian
,
T.
,
Koch
,
M.
,
Muller
,
M.
,
Rodriguez
,
J.
, and
Doble
,
D. M.
,
2011
, “
Simulation and Testing of Cell Operating Temperature in Structured Single and Double Glass Modules
,”
2011 37th IEEE Photovoltaic Specialists Conference
,
IEEE
,
Seattle, WA,
pp.
19
24
.
26.
Maturi
,
L.
,
Belluardo
,
G.
,
Moser
,
D.
, and
Del Buono
,
M.
,
2014
, “
BIPV System Performance and Efficiency Drops: Overview on PV Module Temperature Conditions of Different Module Types
,”
Energy Procedia
,
48
, pp.
1311
1319
.
27.
Guerrero-Lemus
,
R.
,
Vega
,
R.
,
Kim
,
T.
,
Kimm
,
A.
, and
Shephard
,
L. E.
,
2016
, “
Bifacial Solar Photovoltaics—A Technology Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1533
1549
.
28.
Alasadi
,
H.
,
Mulford
,
R.
, and
Gilbert
,
R.
,
2020
, “
Reflector-Augmented Photovoltaic Power Output Incorporating Temperature-Dependent Photovoltaic Efficiency
,”
Volume 8: Energy
, “Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition. Volume 8: Energy. Virtual,
ASME,
Nov. 16–19
, Paper No.
V008T08A057
.
29.
Alhajeri
,
R. A.
, and
Abu-Hijleh
,
B.
,
2020
, “
Optimization of PV Cleaning Practices: Comparison Between Performance-Based and Periodic-Based Approaches
,”
ASME J. Eng. Sustain. Build. Cities
,
1
(
2
), p.
021005
.
30.
Lamers
,
M. W. P. E.
,
Özkalay
,
E.
,
Gali
,
R. S. R.
,
Janssen
,
G. J. M.
,
Weeber
,
A. W.
,
Romijn
,
I. G.
, and
Van Aken
,
B. B.
,
2018
, “
Temperature Effects of Bifacial Modules: Hotter or Cooler?
,”
Sol. Energy Mater. Sol. Cells
,
185
, pp.
192
197
.
31.
Molin
,
E.
,
Stridh
,
B.
,
Molin
,
A.
, and
Wackelgard
,
E.
,
2018
, “
Experimental Yield Study of Bifacial PV Modules in Nordic Conditions
,”
IEEE J. Photovolt.
,
8
(
6
), pp.
1457
1463
.
32.
Janssen
,
G. J. M.
,
Van Aken
,
B. B.
,
Carr
,
A. J.
, and
Mewe
,
A. A.
,
2015
, “
Outdoor Performance of Bifacial Modules by Measurements and Modelling
,”
Energy Procedia
,
77
, pp.
364
373
.
33.
Brendel
,
R.
,
Schinke
,
C.
,
Bothe
,
K.
,
Gewohn
,
T.
, and
Vogt
,
M. R.
, “
Impact of Using Spectrally Resolved Ground Albedo Data for Performance Simulations of Bifacial Modules
,”
35th European Photovoltaic Solar Energy Conference and Exhibition. WIP
,
November 6
, pp.
1011
1016
. https://www.eupvsec-proceedings.com/proceedings?paper=45447.
34.
Asgharzadeh
,
A.
,
Lubenow
,
T.
,
Sink
,
J.
,
Marion
,
B.
,
Deline
,
C.
,
Clifford
,
H.
,
Stein
,
J.
, and
Fatima
,
T.
,
2017
, “
Analysis of the Impact of Installation Parameters and System Size on Bifacial Gain and Energy Yield of PV Systems
,”
2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)
,
IEEE
, pp.
3333
3338
.
35.
Shoukry
,
I.
,
Libal
,
J.
,
Kopecek
,
R.
,
Wefringhaus
,
E.
, and
Werner
,
J.
,
2016
, “
Modelling of Bifacial Gain for Stand-Alone and in-Field Installed Bifacial PV Modules
,”
Energy Procedia
,
92
, pp.
600
608
.
36.
Krarti
,
M.
,
2022
, “
A Comparative Energy Analysis of Dynamic External Shadings for Office Buildings
,”
ASME J. Eng. Sustain. Bldgs. Cities
,
3
(
2
), p.
021001
.
37.
Sadineni
,
S. B.
,
Madala
,
S.
, and
Boehm
,
R. F.
,
2012
, “
A Cost Effective Solar Tracker and Performance Monitoring System for Utility Scale Photovoltaic Installations
,”
Proceedings of the ASME 2012 6th International Conference on Energy Sustainability Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
,
ASME
,
San Diego, CA,
July 23–26,
pp.
965
977
.
38.
Hotz
,
N.
,
Pan
,
H.
,
Grigoropoulos
,
C. P.
, and
Ko
,
S. H.
,
2010.
Exergetic Analysis of Solar-Powered Hybrid Energy Conversion and Storage Scenarios for Stationary Applications
,”
Proceedings of the ASME 2010 Fourth International Conference on Energy Sustainability. ASME 2010 Fourth International Conference on Energy Sustainability, Volume 1
,
ASME
.
Phoenix, AZ,
May 17–22
. pp.
879
888
.
39.
Moreno-Gamboa
,
F.
,
Nieto-Londoño
,
C.
,
Escudero-Atehortua
,
A.
, and
Lopera
,
L.
,
2020
, “
Energy and Exergy Analysis of a Multi-Stage Hybrid Concentrated Solar Power Plant
,”
Proceedings of the ASME 2020 Power Conference Collocated With the 2020 International Conference on Nuclear Engineering. ASME 2020 Power Conference. Virtual
,
ASME
,
August 4–5
, Paper No.
V001T08A019
.
40.
Gu
,
W.
,
Ma
,
T.
,
Li
,
M.
,
Shen
,
L.
, and
Zhang
,
Y.
,
2020
, “
A Coupled Optical-Electrical-Thermal Model of the Bifacial Photovoltaic Module
,”
Appl. Energy
,
258
(
2020
), p.
114075
.
41.
Baloch
,
A. B.
,
Hammat
,
S.
,
Figgis
,
B.
,
Alharbi
,
H.
, and
Tabet
,
N.
,
2020
, “
In-Field Characterization of Key Performance Parameters for Bifacial Photovoltaic Installation in a Desert Climate
,”
Renewable Energy
,
159
(
2020
), pp.
50
63
.
42.
Muthu
,
V.
, and
Ramadas
,
G.
,
2022
, “
Experimental Investigation of 4E Performance Studies of a Vertical Bifacial Solar Module During Summer and Winter
,”
Environ. Sci. Pollut. Res.
,
29
(
12
), pp.
17943
17963
.
43.
Sudhakar
,
K.
, and
Tulika
,
S.
,
2013
, “
Energy and Exergy Analysis of 36W Solar Photovoltaic Module
,”
Int. J. Ambient Energy
,
35
(
1
), pp.
51
57
.
44.
Rohit
,
T.
, and
Tiwari
,
G. N.
,
2019
, “
Energy Matrices, Life Cycle Cost, Carbon Mitigation and Credits of Open-Loop N Concentrated Photovoltaic Thermal (CPVT) Collector at Cold Climate in India: A Comparative Study
,”
Sol. Energy
,
186
(
2019
), pp.
347
359
.
45.
Rohit
,
T.
,
Tiwari
,
G. N.
,
and Dwivedi
,
G. N.
, and
K
,
V.
,
2017
, “
Energy Matrices Evaluation and Exergoeconomic Analysis of Series Connected N Partially Covered (Glass to Glass PV Module) Concentrated-Photovoltaic Thermal Collector: At Constant Flow Rate Mode
,”
Energy Convers. Manage.
,
145
, pp.
353
370
.
46.
Tiwari
,
G. N.
,
Khan
,
E.
, and
Goyal
,
R. K.
,
1998
, “
Experimental Study of Evaporation in Distillation
,”
Desalination
,
115
(
2
), pp.
121
128
.
47.
Agrawal
,
A.
, and
Rana
,
R. S.
,
2019
, “
Theoretical and Experimental Performance Evaluation of Single-Slope Single-Basin Solar Still With Multiple V-Shaped Floating Wicks
,”
Heliyon
,
5
(
4
), p.
e01525
.
You do not currently have access to this content.