Abstract

The distributions of heat flux over the circumference of the receiver tubes have an immense influence on the performance and reliability of the parabolic trough solar thermal collectors. The location of the receiver tube and the secondary reflector configuration may largely influence the performance of the system. Therefore, in this study, the effect of receiver tube position and parabolic secondary reflector configuration has been analyzed, and the non-uniformity of solar flux distribution, heat gradient, and power output has been compared. The results of the Monte Carlo ray-tracing analysis to homogenize the receiver tube flux distribution and maximize the output power, making the use of the cutting edge solar optical simulation tool Tonatiuh, has been presented. A parabolic trough collector with a rim angle of 80 deg and aperture area of 40 m2 have been used for the analysis. It has been confirmed that the circumferential heat flux gradient and the local hot spot could be greatly diminished, while the power output tended to reduce slightly due to the shading effect of the secondary reflector. Under the conditions investigated in this work, although the output power decreased by 4.83%, flux gradient reduced significantly, and the non-uniformity of flux distribution has reduced from 0.9757 to 0.5176. A simple design procedure for receiver tube position and secondary reflector configurations to homogenize the receiver tube temperature distribution has also been proposed.

References

1.
Ullah
,
K. R.
,
Saidur
,
R.
,
Ping
,
H. W.
,
Akikur
,
R. K.
, and
Shuvo
,
N. H.
,
2013
, “
A Review of Solar Thermal Refrigeration and Cooling Methods
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
499
513
.
2.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2017
, “
Line-Focusing Concentrating Solar Collector-Based Power Plants: A Review
,”
Clean Technol. Environ. Policy
,
19
(
1
), pp.
9
35
.
3.
Wang
,
K.
,
He
,
Y.
, and
Cheng
,
Z.
,
2014
, “
A Design Method and Numerical Study for a New Type Parabolic Trough Solar Collector With Uniform Solar Flux Distribution
,”
Sci. China Technol. Sci.
,
57
(
3
), pp.
531
540
.
4.
He
,
Y. L.
,
Wang
,
K.
,
Qiu
,
Y.
,
Du
,
B. C.
,
Liang
,
Q.
, and
Du
,
S.
,
2019
, “
Review of the Solar Flux Distribution in Concentrated Solar Power: Non-uniform Features, Challenges, and Solutions
,”
Appl. Therm. Eng.
,
149
, pp.
448
474
.
5.
Minaeian
,
A.
,
Alemrajabi
,
A.
,
Chavoshi
,
M.
,
Mostafaeipour
,
A.
, and
Seifi
,
Z.
,
2020
, “
Effect of Secondary Reflector on Solar Flux Intensity and Uniformity of a Fresnel Concentrator
,”
J. Renewable Sustainable Energy
,
12
(
3
), p.
033703
.
6.
Okafor
,
I. F.
,
Dirker
,
J.
, and
Meyer
,
J. P.
,
2014
, “
Influence of Circumferential Solar Heat Flux Distribution on the Heat Transfer Coefficients of Linear Fresnel Collector Absorber Tubes
,”
Sol. Energy
,
107
, pp.
381
397
.
7.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2014
, “
Heat Transfer and Thermodynamic Performance of a Parabolic Trough Receiver With Centrally Placed Perforated Plate Inserts
,”
Appl. Energy
,
136
, pp.
989
1003
.
8.
Wu
,
Z.
,
Lei
,
D.
,
Yuan
,
G.
,
Shao
,
J.
,
Zhang
,
Y.
, and
Wang
,
Z.
,
2014
, “
Structural Reliability Analysis of Parabolic Trough Receivers
,”
Appl. Energy
,
123
, pp.
232
241
.
9.
Wang
,
K.
,
He
,
Y. L.
,
Xue
,
X. D.
, and
Du
,
B. C.
,
2017
, “
Multi-objective Optimization of the Aiming Strategy for the Solar Power Tower With a Cavity Receiver by Using the Non-dominated Sorting Genetic Algorithm
,”
Appl. Energy
,
205
, pp.
399
416
.
10.
Ibrar Hussain
,
M.
,
Mokheimer
,
E. M. A.
, and
Ahmed
,
S.
,
2017
, “
Optimal Design of a Solar Collector for Required Flux Distribution on a Tubular Receiver
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012006
.
11.
Jaramillo
,
O. A.
,
Borunda
,
M.
,
Velazquez-Lucho
,
K. M.
, and
Robles
,
M.
,
2016
, “
Parabolic Trough Solar Collector for Low Enthalpy Processes: An Analysis of the Efficiency Enhancement by Using Twisted Tape Inserts
,”
Renewable Energy
,
93
, pp.
125
141
.
12.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nano Fluids and Converging-Diverging Absorber Tube
,”
Renewable Energy
,
94
, pp.
213
222
.
13.
Huang
,
Z.
,
Li
,
Z. Y.
,
Yu
,
G. L.
, and
Tao
,
W. Q.
,
2017
, “
Numerical Investigations on Fully-Developed Mixed Turbulent Convection in Dimpled Parabolic Trough Receiver Tubes
,”
Appl. Therm. Eng.
,
114
, pp.
1287
1299
.
14.
Ravi Kumar
,
K.
, and
Reddy
,
K. S.
,
2009
, “
Thermal Analysis of Solar Parabolic Trough With Porous Disc Receiver
,”
Appl. Energy
,
86
(
9
), pp.
1804
1812
.
15.
Wang
,
P.
,
Li
,
J. B.
,
Vafai
,
K.
,
Zhao
,
L.
, and
Zhou
,
L.
,
2017
, “
Thermo-Fluid Optimization of a Solar Porous Absorber With a Variable Pore Structure
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051012
.
16.
Cheng
,
Z. D.
,
He
,
Y. L.
, and
Cui
,
F. Q.
,
2012
, “
Numerical Study of Heat Transfer Enhancement by Unilateral Longitudinal Vortex Generators Inside Parabolic Trough Solar Receivers,”
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5631
5641
.
17.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2018
, “
Numerical Analysis of Heat Transfer Enhancement in a Parabolic Trough Collector Based on Geometry Modifications and Working Fluid Usage
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051009
.
18.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2016
, “
Heat Transfer and Entropy Generation in a Parabolic Trough Receiver With Wall-Detached Twisted Tape Inserts
,”
Int. J. Therm. Sci.
,
99
, pp.
238
257
.
19.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2015
, “
Integration of Parabolic Trough and Linear Fresnel Collectors for Optimum Design of Concentrating Solar Thermal Power Plant
,”
Clean Technol. Environ. Policy
,
17
(
7
), pp.
1945
1961
.
20.
Xu
,
H.
,
Li
,
Y.
,
Sun
,
J.
, and
Li
,
L.
,
2019
, “
Transient Model and Characteristics of Parabolic-Trough Solar Collectors : Molten Salt vs. Synthetic Oil
,”
Sol. Energy
,
182
, pp.
182
193
.
21.
Chang
,
C.
,
Sciacovelli
,
A.
,
Wu
,
Z.
,
Li
,
X.
,
Li
,
Y.
,
Zhao
,
M.
,
Deng
,
J.
,
Wang
,
Z.
, and
Ding
,
Y.
,
2018
, “
Enhanced Heat Transfer in a Parabolic Trough Solar Receiver by Inserting Rods and Using Molten Salt as Heat Transfer Fluid
,”
Appl. Energy
,
220
, pp.
337
350
.
22.
Sarkar
,
J.
,
Ghosh
,
P.
, and
Adil
,
A.
,
2015
, “
A Review on Hybrid Nano Fluids : Recent Research, Development and Applications
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
164
177
.
23.
Kasaeian
,
A.
,
Daviran
,
S.
,
Azarian
,
R. D.
, and
Rashidi
,
A.
,
2015
, “
Performance Evaluation and Nanofluid Using Capability Study of a Solar Parabolic Trough Collector
,”
Energy Convers. Manage.
,
89
, pp.
368
375
.
24.
Khakrah
,
H.
,
Shamloo
,
A.
, and
Hannani
,
S. K.
,
2017
, “
Determination of Parabolic Trough Solar Collector Efficiency Using Nanofluid: A Comprehensive Numerical Study
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051006
.
25.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Thermal Analysis of Parabolic Trough Collector Operating With Mono and Hybrid Nanofluids
,”
Sustain. Energy Technol. Assess.
,
26
, pp.
105
115
.
26.
Hachicha
,
A. A.
,
Rodríguez
,
I.
,
Capdevila
,
R.
, and
Oliva
,
A.
,
2013
, “
Heat Transfer Analysis and Numerical Simulation of a Parabolic Trough Solar Collector
,”
Appl. Energy
,
111
, pp.
581
592
.
27.
hu Gong
,
J.
,
Wang
,
J.
,
Lund
,
P. D.
,
yi Hu
,
E.
,
cheng Xu
,
Z.
,
peng Liu
,
G.
, and
shuai Li
,
G.
,
2020
, “
Improving the Performance of a 2-Stage Large Aperture Parabolic Trough Solar Concentrator Using a Secondary Reflector Designed by Adaptive Method
,”
Renewable Energy
,
152
, pp.
23
33
.
28.
Bharti
,
A.
,
Mishra
,
A.
, and
Paul
,
B.
,
2019
, “
Thermal Performance Analysis of Small-Sized Solar Parabolic Trough Collector Using Secondary Reflectors
,”
Int. J. Sustainable Energy
,
38
(
10
), pp.
1002
1022
.
29.
Rodriguez-Sanchez
,
D.
, and
Rosengarten
,
G.
,
2015
, “
Improving the Concentration Ratio of Parabolic Troughs Using a Second-Stage Flat Mirror
,”
Appl. Energy
,
159
, pp.
620
632
.
30.
Cao
,
F.
,
Li
,
Y.
,
Wang
,
L.
, and
Zhu
,
T. Y.
,
2016
, “
Thermal Performance and Stress Analyses of the Cavity Receiver Tube in the Parabolic Trough Solar Collector
,”
IOP Conf. Ser. Earth Environ. Sci.
,
40
, p.
012067
.
31.
Wang
,
K.
,
Zhang
,
Z.-D.
,
Li
,
M.-J.
, and
Min
,
C. H.
,
2021
, “
A Coupled Optical-Thermal-Fluid-Mechanical Analysis of Parabolic Trough Solar Receivers Using Supercritical CO2 as Heat Transfer Fluid
,”
Appl. Therm. Eng.
,
183
, p.
116154
.
32.
Tang
,
X. Y.
,
Yang
,
W. W.
,
Yang
,
Y.
,
Jiao
,
Y. H.
, and
Zhang
,
T.
,
2021
, “
A Design Method for Optimizing the Secondary Reflector of a Parabolic Trough Solar Concentrator to Achieve Uniform Heat Flux Distribution
,”
Energy
,
229
, p.
120749
.
33.
Uzair
,
M.
, and
Rehman
,
N. U.
,
2021
, “
Intercept Factor for a Beam-Down Parabolic Trough Collector
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061002
.
34.
Wang
,
X.
,
Luo
,
S.
,
Tang
,
T.
,
Liu
,
X.
, and
He
,
Y.
,
2019
, “
A MCRT-FVM-FEM Coupled Simulation for Optical-Thermal-Structural Analysis of Parabolic Trough Solar Collectors
,”
Energy Procedia
,
158
, pp.
477
482
.
35.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Cui
,
F. Q.
,
Xu
,
R. J.
, and
Tao
,
Y. B.
,
2012
, “
Numerical Simulation of a Parabolic Trough Solar Collector With Non-Uniform Solar Flux Conditions by Coupling FVM and MCRT Method
,”
Sol. Energy
,
86
(
6
), pp.
1770
1784
.
36.
Yuan
,
G.
,
Fan
,
J.
,
Kong
,
W.
,
Furbo
,
S.
,
Perers
,
B.
, and
Sallaberry
,
F.
,
2020
, “
Experimental and Computational Fluid Dynamics Investigations of Tracking CPC Solar Collectors
,”
Sol. Energy
,
199
, pp.
26
38
.
37.
Lüpfert
,
E.
,
Pottler
,
K.
,
Ulmer
,
S.
,
Riffelmann
,
K. J.
,
Neumann
,
A.
, and
Schiricke
,
B.
,
2007
, “
Parabolic Trough Optical Performance Analysis Techniques
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
147
152
.
38.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Du
,
B. C.
,
Wang
,
K.
, and
Liang
,
Q.
,
2015
, “
Geometric Optimization on Optical Performance of Parabolic Trough Solar Collector Systems Using Particle Swarm Optimization Algorithm
,”
Appl. Energy
,
148
, pp.
282
293
.
39.
Dong
,
X.
,
Nathan
,
G. J.
,
Sun
,
Z.
,
Ashman
,
P. J.
, and
Gu
,
D.
,
2016
, “
Secondary Concentrators to Achieve High Flux Radiation With Metal Halide Solar Simulators
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
041001
.
40.
Wu
,
Z.
,
Li
,
S.
,
Yuan
,
G.
,
Lei
,
D.
, and
Wang
,
Z.
,
2014
, “
Three-Dimensional Numerical Study of Heat Transfer Characteristics of Parabolic Trough Receiver
,”
Appl. Energy
,
113
, pp.
902
911
.
41.
Chen
,
F.
,
Li
,
M.
, and
Zhang
,
P.
,
2015
, “
Distribution of Energy Density and Optimization on the Surface of the Receiver for Parabolic Trough Solar Concentrator
,”
Int. J. Photoenergy
,
2015
, pp.
1
10
.
42.
Wang
,
Y.
,
Potter
,
D.
,
Asselineau
,
C. A.
,
Corsi
,
C.
,
Wagner
,
M.
,
Caliot
,
C.
,
Piaud
,
B.
,
Blanco
,
M.
,
Kim
,
J. S.
, and
Pye
,
J.
,
2020
, “
Verification of Optical Modelling of Sunshape and Surface Slope Error for Concentrating Solar Power Systems
,”
Sol. Energy
,
195
, pp.
461
474
.
43.
Reda
,
H. M.
, and
Abdelylah
,
B.
,
2019
, “
Numerical Investigation and Solar Flux Distribution Analysis of Parabolic Trough Solar Collector by Adding Secondary Reflector
,”
Instrum. Mes. Metrol.
,
18
(
3
), pp.
275
280
.
44.
Tripathy
,
A. K.
,
Ray
,
S.
,
Sahoo
,
S. S.
, and
Chakrabarty
,
S.
,
2018
, “
Structural Analysis of Absorber Tube Used in Parabolic Trough Solar Collector and Effect of Materials on Its Bending: A Computational Study
,”
Sol. Energy
,
163
, pp.
471
485
.
45.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2019
, “
Alternative Designs of Parabolic Trough Solar Collectors
,”
Prog. Energy Combust. Sci.
,
71
, pp.
81
117
.
You do not currently have access to this content.