Abstract

Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this study, quartz half-shells are investigated for use as full or partial aperture covers to reduce receiver thermal losses. Quartz half-shell aperture covers offer the ability to minimally interfere with incoming solar radiation from the heliostat field while obstructing thermal radiation and advection from leaving the receiver cavity. The fluid dynamics and heat transfer of a receiver subdomain and surrounding air are modeled using ansys®fluent. We compare the percentage of total incident solar power lost due to conduction through the receiver walls, advective losses through the aperture, and radiation exiting the aperture. Contrary to expected outcomes, results show that quartz aperture covers can increase radiative losses and result in modest to nonexistent reductions in advective losses. The increased radiative losses are driven by elevated quartz half-shell temperatures and have the potential to be mitigated by active cooling and/or material selection. Quartz half-shell total transmissivity was measured experimentally using a radiometer and the National Solar Thermal Test Facility heliostat field with values up to 0.97 ± 0.01. Quartz half-shell aperture covers did not yield expected efficiency gains in numerical results due to increased radiative losses, but efficiency improvement in some numerical results and the performance of quartz half-shells subject to concentrated solar radiation suggest that quartz half-shell aperture covers should be investigated further.

References

1.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
(
Part B
), pp.
958
969
.
2.
Yue
,
L.
,
Schroeder
,
N.
, and
Ho
,
C. K.
,
2020
, “
Particle Flow Testing of a Multistage Falling Particle Receiver Concept: Staggered Angle Iron Receiver (StAIR)
,”
ASME 2020 14th International Conference on Energy Sustainability, ES2020-1666, Virtual Online Conference
,
June 17–18
, p. V001T02A012.
3.
Shaeffer
,
R.
,
Mills
,
B.
,
Yue
,
L.
, and
Ho
,
C. K.
,
2020
, “
Evaluation of Performance Factors for a Multistage Falling Particle Receiver
,”
ASME 2020 14th International Conference on Energy Sustainability, ES2020-9783, Virtual Online Conference
,
June 17–18
, p. V001T02A020.
4.
Mills
,
B.
,
Shaeffer
,
R.
,
Yue
,
L.
, and
Ho
,
C. K.
,
2020
, “
Improving Next-Generation Falling Particle Receiver Designs Subject to Anticipated Operating Conditions
,”
ASME 2020 14th International Conference on Energy Sustainability, ES2020-1667, Virtual Online Conference
,
June 17–18
, p. V001T02A013.
5.
Kumar
,
A.
,
Lipiński
,
W.
, and
Kim
,
J.-S.
,
2020
, “
Numerical Modelling of Radiation Absorption in a Novel Multi-Stage Free-Falling Particle Receiver
,”
Int J Heat Mass Tran
,
146
, p.
118821
.
6.
Kim
,
J.-S.
,
Gardner
,
W.
,
Potter
,
D.
, and
Too
,
Y. C. S.
,
2020
, “
Design and Test of Multi-Stage Truncated-Cone Falling Particle Receiver
,”
AIP Conf. Proc.
,
2303
(
1
), p.
030023
.
7.
Ho
,
C. K.
,
Schroeder
,
N. R.
,
Labuscher
,
H. L.
,
Yue
,
L.
,
Mills
,
B.
,
Shaeffer
,
R.
,
Christian
,
J. M.
, and
Albrecht
,
K. J.
,
2020
, “
Receiver Design and On-Sun Testing for G3P3-USA
,”
SolarPACES 2020, Virtual Online Conference
,
Sept. 28–Oct. 2
, pp.
1
12
.
8.
Yue
,
L.
,
Shaeffer
,
R.
,
Mills
,
B.
, and
Ho
,
C. K.
,
2019
, “
Active Airflow for Reducing Advective and Particle Loss in Falling Particle Receivers
,”
AIP Conf. Proc.
,
2303
(
1
), p.
030036
.
9.
Yellowhair
,
J.
, and
Ho
,
C. K.
,
2019
, “
Optical Ray-Tracing Performance Modeling of Quartz Half-Shell Tubes Aperture Cover for Falling Particle Receiver
,”
ASME 2019 13th International Conference on Energy Sustainability, ES2019-3927
,
Bellevue, WA
,
July 14–17
, p. V001T03A012.
10.
Mills
,
B.
,
Schroeder
,
B.
,
Yue
,
L.
,
Shaeffer
,
R.
, and
Ho
,
C. K.
,
2019
, “
Optimizing a Falling Particle Receiver Geometry Using CFD Simulations to Maximize the Thermal Efficiency
,”
AIP Conf. Proc.
,
2303
(
1
), p.
030027
.
11.
Kim
,
J.-S.
,
Kumar
,
A.
,
Gardner
,
W.
, and
Lipiński
,
W.
,
2019
, “
Numerical and Experimental Investigation of a Novel Multi-Stage Falling Particle Receiver
,”
AIP Conf. Proc.
,
2126
(
1
), p.
030030
.
12.
Ho
,
C. K.
,
Peacock
,
G.
,
Christian
,
J. M.
,
Albrecht
,
K. J.
,
Yellowhair
,
J. E.
, and
Ray
,
D.
,
2019
, “
On-Sun Testing of a 1 MWt Particle Receiver With Automated Particle Mass-Flow and Temperature Control
,”
Aip Conf Proc
,
2126
(
1
), p. 030027.
13.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J. E.
,
Armijo
,
K.
,
Kolb
,
W. J.
,
Jeter
,
S.
,
Golob
,
M.
, and
Nguyen
,
C.
,
2019
, “
On-Sun Performance Evaluation of Alternative High-Temperature Falling Particle Receiver Designs
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p. 011009.
14.
Albrecht
,
K. J.
,
Bauer
,
M. L.
, and
Ho
,
C. K.
,
2019
, “
Parametric Analysis of Particle CSP System Performance and Cost to Intrinsic Particle Properties and Operating Conditions
,”
ASME 2019 13th International Conference on Energy Sustainability.
,
Bellevue, WA
,
July 14–17
, p. V001T03A006.
15.
Al-Ansary
,
H.
,
El-Leathy
,
A.
,
Jeter
,
S.
,
Djajadiwinata
,
E.
,
Alaqel
,
S.
,
Golob
,
M.
,
Nguyen
,
C.
, et al
,
2018
, “
On-Sun Experiments on a Particle Heating Receiver With Red Sand as the Working Medium
,”
AIP Conf. Proc.
,
2033
(
1
), p.
040002
.
16.
Mills
,
B.
,
Ho
,
C. K.
,
Christian
,
J. M.
, and
Peacock
,
G.
,
2017
, “
Novel Particle Release Patterns for Increased Receiver Thermal Efficiency
,”
AIP Conf. Proc.
,
1850
(
1
), p.
030035
.
17.
Siegel
,
R.
, and
Howell
,
J. R.
,
1981
,
Thermal Radiation Heat Transfer
, 2nd ed.,
Hemisphere Publishing Corporation
,
Washington
.
18.
Hertel
,
J.
,
Uhlig
,
R.
,
Söhn
,
M.
,
Schenk
,
C.
,
Helsch
,
G.
, and
Bornhöft
,
H.
,
2016
, “
Fused Silica Windows for Solar Receiver Applications
,”
AIP Conf. Proc.
,
1734
(
1
), p.
030020
.
19.
Buck
,
R.
,
2017
, “
Optical Performance of Segmented Aperture Windows for Solar Tower Receivers
,”
AIP Conf. Proc.
,
1850
(
1
), p.
030006
.
20.
Tetreault-Friend
,
M.
,
Diago
,
M.
,
Cooper
,
T. A.
,
Gray
,
L. A.
, and
Slocum
,
A. H.
,
2018
, “
A Floating Modular Cover for High Temperature Open-Tank Molten Salt Solar-Thermal Volumetric Receivers
,”
Sol. Energy
,
176
, pp.
465
482
.
21.
Kaneko
,
H.
,
Kodama
,
T.
,
Gokon
,
N.
,
Tamaura
,
Y.
,
Lovegrove
,
K.
, and
Luzzi
,
A.
,
2004
, “
Decomposition of Zn-Ferrite for O2 Generation by Concentrated Solar Radiation
,”
Sol. Energy
,
76
(
1–3
), pp.
317
322
.
22.
Bai
,
F.
,
Zhigang
,
Y.
,
Zhang
,
X.
,
Want
,
F.
,
Wang
,
Y.
, and
Wang
,
Z.
,
2014
, “
Thermal Performance of a Quartz Tube Solid Particle Air Receiver
,”
Energy Proc.
,
49
, pp.
284
294
.
23.
ANSYS® Fluent Theory Guide
,
2020
,
Release 19.2, Help System
,
ANSYS, Inc.
,
Canonsburg, PA
.
24.
Mills
,
B.
, and
Ho
,
C. K.
,
2018
, “
Annualized Thermal Performance of Intermediate-Scale Falling Particle Receivers
,”
AIP Conf. Proc.
,
2033
, p. 040026.
25.
Mills
,
B.
, and
Ho
,
C. K.
,
2017
, “
Numerical Evaluation of Novel Particle Release Patterns in High-Temperature Falling Particle Receivers
,”
ASME 2017 11th International Conference on Energy Sustainability, ES2017-3689
,
Charlotte, NC
,
June 26–30
, p. V001T05A016.
26.
Christian
,
J.
, and
Ho
,
C.
,
2014
, “
Alternative Designs of a High Efficiency, North-Facing, Solid Particle Receiver
,”
Energy Proc.
,
49
, pp.
314
323
.
27.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021008
.
28.
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Siegel
,
N. P.
,
2009
, “
Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Storage
,”
ASME 2009 3rd International Conference on Energy Sustainability, ES2009-90035
,
San Francisco, CA
,
July 19–23
, pp.
543
550
.
29.
Mills
,
B.
, and
Ho
,
C. K.
,
2019
, “
Simulation and Performance Evaluation of On-Sun Particle Receiver Tests
,”
AIP Conf. Proc.
,
2126
, p. 030036.
30.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J.
,
Armijo
,
K.
,
Kolb
,
W. J.
,
Jeter
,
S.
,
Golob
,
M.
, and
Nguyen
,
C.
,
2016
, “
Performance Evaluation of a High-Temperature Falling Particle Receiver
,”
ASME 2016 10th International Conference on Energy Sustainability, ES2016-59238
,
Charlotte, NC
.
31.
Heraeus® Quartz Glass for Optics, Data and Properties, Heraeus Quartz America, LLC., Accessed Dec. 12, 2021.
32.
Touloukian
,
Y. S.
, and
DeWitt
,
D. P.
,
1972
,
Thermal Radiative Properties: Nonmetallic Solids
,
IFI/Plenum
,
New York
.
33.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
34.
Siegel
,
N. P.
,
Kolb
,
G.
,
Kim
,
K.
,
Rangaswamy
,
V.
, and
Moujaes
,
S.
,
2007
, “
Solid Particle Receiver Flow Characterization Studies
,”
ASME 2007 Energy Sustainability Conference, ES2007-36118
,
Long Beach, CA
,
July 27–30
, pp.
877
883
.
35.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
36.
Ranz
,
W. E.
, Jr.
, and
M
,
W. R.
,
1952
, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
You do not currently have access to this content.