Abstract

Kuwait is a country with great potential for concentrated solar power (CSP) due to its high solar resource. The current work analyzes the potential of the application of CSP technology in the country and its particularities. Specifically, the current work examines a CSP plant with parabolic trough collector (PTC) technology and how this technology is affected in its performance depending on the location (inland or coastal) and the refrigeration system (wet, dry, or seawater cooled). The modeling methodology is based on a two-step approach: first, the Rankine steam power cycle is modeled in detail in a state-of-the-art steady-state simulation environment, obtaining the performance of the power cycle for each cooling technology; second, the power cycle performance maps are integrated into a detailed transient system-level simulation model of the complete CSP plant in order to perform annual yield simulations for the different representative locations of the climate of Kuwait. These results provide valuable information on both the potential of this technology for its more immediate application such as electricity generation and other future applications such as the desalination of seawater where the location must necessarily be coastal.

References

1.
NREL
,
2021
,
Concentrating Solar Power Projects
,
National Renewable Energy Laboratory
,
Golden, CO
.
2.
International Renewable Energy Agency (IRENA)
,
2021
, “
Renewable Capacity Statistics 2021
”, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Apr/IRENA_RE_Capacity_Statistics_2021.pdf
3.
International Renewable Energy Agency (IRENA)
,
2015
, “
Renewable Energy in the Water, Energy & Food Nexus
”, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_Water_Energy_Food_Nexus_2015.pdf
4.
Gunawan
,
A.
,
Simmons
,
R. A.
,
Haynes
,
M. W.
,
Moreno
,
D.
,
Menon
,
A. K.
,
Hatzell
,
M. C.
, and
Yee
,
S. K.
,
2019
, “
Techno-economics of Cogeneration Approaches for Combined Power and Desalination From Concentrated Solar Power
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021004
.
5.
Palenzuela
,
P.
,
Alarcón-Padilla
,
D.-C.
, and
Zaragoza
,
G.
,
2015
,
Concentrating Solar Power and Desalination Plants
,
Springer International Publishing
,
New York City
.
6.
Steensma
,
G.
,
Román
,
R.
,
Marshall
,
C.
,
Bermejo
,
J.
,
Iyer
,
K.
,
Al-Hajraf
,
S.
, and
Al-Qattan
,
A.
,
2019
, “
Shagaya Renewable Energy Park Project
,”
AIP Conference Proceedings
, 2126, p.
40003
.
7.
SimTech, IPSEpro, V 7.0, SimTech GmbH, Graz (Austria), PC,
2018
, https://www.simtechnology.com/CMS/index.php/ipsepro
8.
Dymola Dassault Systèmes,
2021
,
Dassault Systèmes Americas Corp.
,
Waltham, MA, PC
, https://www.3ds.com/products-services/catia/products/dymola/
9.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
”, NREL Report No. NREL/TP-550-34169.
10.
Zaversky
,
F.
,
Medina
,
R.
,
García-Barberena
,
J.
,
Sánchez
,
M.
, and
Astrain
,
D.
,
2013
, “
Object-oriented Modeling for the Transient Performance Simulation of Parabolic Trough Collectors Using Molten Salt as Heat Transfer Fluid
,”
Sol. Energy
,
95
, pp.
192
215
.
11.
García-Barberena
,
J.
, and
Ubani
,
N.
,
2016
, “
Adjustment and Validation of a Simulation Tool for CSP Plants Based on Parabolic Trough Technology
,”
SolarPACES 2015
,
Cape Town, South Africa
,
Oct. 13–16
, p.
160005
.
12.
Larraín
,
T.
,
Escobar
,
R.
, and
Vergara
,
J.
,
2010
, “
Performance Model to Assist Solar Thermal Power Plant Siting in Northern Chile Based on Backup Fuel Consumption
,”
Renewable Energy
,
35
(
8
), pp.
1632
1643
.
13.
Yebra
,
L. J.
,
Berenguel
,
M.
,
Dormido
,
S.
, and
Zarza
,
E.
,
2008
, “
Object Oriented Modelling and Simulation of Parabolic Trough Collectors With Modelica
,”
Math. Comput. Modell. Dyn. Syst.
,
14
(
4
), pp.
361
375
.
14.
Clark
,
J. A.
,
1982
, “
Analysis of the Technical and Economic Performance of a Parabolic Trough Concentrator for Solar Industrial Process Heat Application
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1427
1438
.
15.
Edenburn
,
M. W.
,
1976
, “
Performance Analysis of a Cylindrical Parabolic Focusing Collector and Comparison With Experimental Results
,”
Sol. Energy
,
18
(
5
), pp.
437
444
.
16.
Manzolini
,
G.
,
Giostri
,
A.
,
Saccilotto
,
C.
,
Silva
,
P.
, and
Macchi
,
E.
,
2012
, “
A Numerical Model for Off-Design Performance Prediction of Parabolic Trough Based Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011003
.
17.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Huebsch
,
W. W.
, and
Rothmayer
,
A. P.
,
2013
,
Fundamentals of Fluid Mechanics
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
18.
Zaversky
,
F.
,
García-Barberena
,
J.
,
Sánchez
,
M.
, and
Astrain
,
D.
,
2013
, “
Transient Molten Salt Two-Tank Thermal Storage Modeling for CSP Performance Simulations
,”
Sol. Energy
,
93
, pp.
294
311
.
19.
Zaversky
,
F.
,
Rodríguez-García
,
M. M.
,
García-Barberena
,
J.
,
Sánchez
,
M.
, and
Astrain
,
D.
,
2014
, “
Transient Behavior of an Active Indirect Two-Tank Thermal Energy Storage System During Changes in Operating Mode—An Application of an Experimentally Validated Numerical Model
,”
Energy Procedia
,
49
, pp.
1078
1087
.
20.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
21.
Alasfour
,
F. N.
, and
Bin Amer
,
A. O.
,
2006
, “
The Feasibility of Integrating ME-TVC + MEE With Azzour South Power Plant: Economic Evaluation
,”
Desalination
,
197
(
1–3
), pp.
33
49
.
22.
Wagner
,
W.
,
Cooper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H.-J.
,
Kruse
,
A.
,
Mareš
,
R.
, et al
,
2000
, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
150
184
.
23.
El Hefni
,
B.
, and
Bouskela
,
D.
,
2019
,
Modeling and Simulation of Thermal Power Plants With ThermoSysPro
,
Springer International Publishing
,
New York City
.
24.
Lemouari
,
M.
, and
Boumaza
,
M.
,
2010
, “
Experimental Investigation of the Performance Characteristics of a Counterflow Wet Cooling Tower
,”
Int. J. Therm. Sci.
,
49
(
10
), pp.
2049
2056
.
25.
Kloppers
,
J. C.
, and
Kröger
,
D. G.
,
2005
, “
Cooling Tower Performance Evaluation: Merkel, Poppe, and e-NTU Methods of Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
1
7
.
26.
Alotaibi
,
S.
,
Alotaibi
,
F.
, and
Ibrahim
,
O. M.
,
2020
, “
Solar-Assisted Steam Power Plant Retrofitted With Regenerative System Using Parabolic Trough Solar Collectors
,”
Energy Rep.
,
6
, pp.
124
133
.
27.
Qu
,
Z.
,
Oumbe
,
A.
,
Blanc
,
P.
,
Espinar
,
B.
,
Gesell
,
G.
,
Gschwind
,
B.
,
Klüser
,
L.
, et al
,
2016
, “
Fast Radiative Transfer Parameterisation for Assessing the Surface Solar Irradiance: The Heliosat-4 Method
,”
Meteorol. Z.
,
26
(
1
), pp.
33
57
.
28.
Fernández-Peruchena
,
C. M.
,
Polo
,
J.
,
Martín
,
L.
, and
Mazorra
,
L.
,
2020
, “
Site-Adaptation of Modeled Solar Radiation Data: The Site Adapt Procedure
,”
Remote Sens.
,
12
(
13
), p.
2127
.
29.
Polo
,
J.
,
Fernández-Peruchena
,
C.
,
Salamalikis
,
V.
,
Mazorra-Aguiar
,
L.
,
Turpin
,
M.
,
Martín-Pomares
,
L.
,
Kazantzidis
,
A.
,
Blanc
,
P.
, and
Remund
,
J.
,
2020
, “
Benchmarking on Improvement and Site-Adaptation Techniques for Modeled Solar Radiation Datasets
,”
Sol. Energy
,
201
, pp.
469
479
.
30.
Gelaro
,
R.
,
McCarty
,
W.
,
Suárez
,
M. J.
,
Todling
,
R.
,
Molod
,
A.
,
Takacs
,
L.
,
Randles
,
C. A.
, et al
,
2017
, “
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)
,”
J. Clim.
,
30
(
14
), pp.
5419
5454
.
31.
Solar Thermal Electric Plants. Procedure for Generating a Representative Solar Year, UNE 206011:2014 (Spanish Association of Standardization [AENOR], 2014)
32.
Fernández Peruchena
,
C. M.
,
Ramírez
,
L.
,
Silva-Pérez
,
M. A.
,
Lara
,
V.
,
Bermejo
,
D.
,
Gastón
,
M.
,
Moreno-Tejera
,
S.
, et al
,
2016
, “
A Statistical Characterization of the Long-Term Solar Resource: Towards Risk Assessment for Solar Power Projects
,”
Sol. Energy
,
123
, pp.
29
39
.
33.
Fernández-Peruchena
,
C. M.
,
Vignola
,
F.
,
Gastón
,
M.
,
Lara-Fanego
,
V.
,
Ramírez
,
L.
,
Zarzalejo
,
L.
,
Silva
,
M.
, et al
,
2018
, “
Probabilistic Assessment of Concentrated Solar Power Plants Yield: The EVA Methodology
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
802
811
.
34.
Anderlini
,
V. C.
,
Jacob
,
P. G.
, and
Lee
,
J. W.
,
1982
,
Atlas of Physical and Chemical Oceanographic Characteristics of Kuwait Bay
,
Kuwait Institute for Scientific Research (KSIR)
,
Safat, Kuwait
, Report No. KISR704,
15
66
.
35.
Al-Rashidi
,
T. B.
,
El-Gamily
,
H. I.
,
Amos
,
C. L.
, and
Rakha
,
K. A.
,
2009
, “
Sea Surface Temperature Trends in Kuwait Bay, Arabian Gulf
,”
Nat. Hazards
,
50
(
1
), pp.
73
82
.
You do not currently have access to this content.