Abstract

Pelletized thermochemical energy storage media has a potential for long-duration energy storage. Production of solid-state energy storage media can be done within a cavity chemical reactor that captures concentrated solar radiation from a solar thermal field. The temperature stability of a solar reactor is directly influenced by the solar flux intercepted. This paper presents a low-order physical model to simulate the dynamic response of temperature inside a tubular plug-flow reactor prototype. Solid granular particles are fed to the reactor from the top whereas a counter-current flowing gas enters the reactor from the bottom. An in-house code was developed to model transient heat transfer of the reactor wall, gas, and moving particles. The model was preliminarily validated with packed beds for different temperature ranges and two gas flowrates. Dynamic response of the reactor temperature is simulated for different input power and gas/particle flowrates. The results show that the system response can be controlled efficiently by utilizing input power (solar flux) as a control parameter. A conventional proportional integral (PI) controller is designed to control the temperature inside the reactor and to maintain it during the solar flux intermittency. The controller parameters are tuned using the Ziegler–Nichols method to ensure optimal system response. The results show that the feedback control model is successful in tracking different reference reactor temperatures within a reasonable settling time of 30 min and eliminated overshoot. This study can be extended to include a hybrid reactor with a multi-input, multi-output variable system.

References

1.
Farulla
,
G.
,
Cellura
,
M.
,
Guarino
,
F.
, and
Ferraro
,
M. A.
,
2020
, “
Review of Thermochemical Energy Storage Systems for Power Grid Support
,”
Appl. Sci.
,
10
(
9
), p.
3142
.
2.
Enescu
,
D.
,
Chicco
,
G.
,
Porumb
,
R.
, and
Seritan
,
G.
,
2020
, “
Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends
,”
Energies
,
13
(
2
), p.
340
.
3.
Prieto
,
C.
,
Cooper
,
P.
,
Fernández
,
I.
, and
Cabeza
,
L.
,
2016
, “
Review of Technology: Thermochemical Energy Storage for Concentrated Solar Power Plants
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
909
929
.
4.
Rönnebro
,
E. C.
,
Whyatt
,
G.
,
Powell
,
M.
,
Westman
,
M.
,
Zheng
,
F. R.
, and
Fang
,
Z. Z.
,
2015
, “
Metal Hydrides for High-Temperature Power Generation
,”
Energies
,
8
(
8
), pp.
8406
8430
.
5.
Block
,
T.
,
Knoblauch
,
N.
, and
Schmücker
,
M.
,
2014
, “
The Cobalt-Oxide/Iron-Oxide Binary System for Use as High Temperature Thermochemical Energy Storage Material
,”
Thermochim. Acta
,
10
, pp.
25
32
.
6.
Rhodes
,
N. R.
,
Barde
,
A.
,
Randhir
,
K.
,
Li
,
L.
,
Hahn
,
D. W.
,
Mei
,
R.
,
Klausner
,
J. F.
, and
AuYeung
,
N.
,
2015
, “
Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3
,”
ChemSusChem
,
8
(
22
), pp.
3793
3798
.
7.
Randhir
,
K.
,
King
,
K.
,
Rhodes
,
N.
,
Li
,
L.
,
Hahn
,
D.
,
Mei
,
R.
,
Aeyung
,
N.
, and
Klausner
,
J.
,
2019
, “
Magnesium-manganese Oxides for High-Temperature Thermochemical Energy Storage
,”
J. Energy Storage
,
21
, pp.
599
610
.
8.
Bellouard
,
Q.
,
Abanades
,
S.
,
Rodat
,
S.
, and
Dupassieux
,
N.
,
2016
, “
Solar Thermochemical Gasification of Wood Biomass for Syngas Production in a High-Temperature Continuously-Fed Tubular Reactor
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
13486
13497
.
9.
Melchior
,
T.
,
Perkins
,
C.
,
Weimer
,
W.
, and
Steinfeld
,
A.
,
2008
, “
A Cavity-Receiver Containing a Tubular Absorber for High-Temperature Thermochemical Processing Using Concentrated Solar Energy
,”
Int. J. Therm. Sci.
,
47
(
11
), pp.
1496
1503
.
10.
Roca
,
L.
,
Diaz-Franco
,
R.
,
de la Calle
,
A.
,
Bonilla
,
J.
,
Yebra
,
L. J.
, and
Vidal
,
A.
,
2014
, “
A Combinatorial Optimization Problem to Control a Solar Reactor
,”
Energy Procedia
,
49
, pp.
2037
2046
.
11.
Mészáros
,
A.
,
Rusnák
,
A.
, and
Fikar
,
M.
,
1999
, “
Adaptive Neural PID Control Case Study: Tubular Chemical Reactor
,”
Comput. Chem. Eng.
,
23
, pp.
S847
S850
.
12.
Petrasch
,
J.
,
Osch
,
P.
, and
Steinfeld
,
A.
,
2009
, “
Dynamics and Control of Solar Thermochemical Reactors
,”
Chem. Eng. J.
,
145
(
3
), pp.
362
370
.
13.
Vural
,
İ
,
Altinten
,
H.
,
Hapoğlu
,
A.
,
Erdoğan
,
H.
, and
Alpbaz
,
M.
,
2015
, “
Application of pH Control to a Tubular Flow Reactor
,”
Chin. J. Chem. Eng.
,
23
(
1
), pp.
154
16
.
14.
Abedini
,
N. H.
, and
Ozalp
,
N.
,
2018
, “
Aperture Size Adjustment Using Model Based Adaptive Control Strategy to Regulate Temperature in a Solar Receiver
,”
Sol. Energy
,
159
, pp.
20
36
.
15.
Abuseada
,
M.
, and
Ozalp
,
N.
,
2020
, “
Experimental and Numerical Study on Heat Transfer Driven Dynamics and Control of Transient Variations in a Solar Receiver
,”
Sol. Energy
,
211
, pp.
700
711
.
16.
Rowe
,
R.
,
Scott
,
C.
,
Hischier
,
I.
,
Palumbo
,
A.
,
Chubukov
,
B.
,
Wallace
,
M.
,
Viger
,
R.
,
Lewandowski
,
A.
,
Clough
,
D.
, and
Weimer
,
W.
,
2018
, “
Nowcasting, Predictive Control, and Feedback Control for Temperature Regulation in a Novel Hybrid Solar-Electric Reactor for Continuous Solar-Thermal Chemical Processing
,”
Sol. Energy
,
174
, pp.
474
488
.
17.
Al Sahlani
,
A.
,
Randhir
,
K.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2021
, “
A Simplified Numerical Approach to Characterize the Thermal Response of a Moving Bed Solar Reactor
,”
ASME 2021 Summer Heat Transfer Conference, Paper No. SHTC2021-63924.
18.
Wen
,
D.
, and
Ding
,
Y.
,
2006
, “
Heat Transfer of Gas Flow Through a Packed Bed
,”
Chem. Eng. Sci.
,
61
(
11
), pp.
3532
3542
.
19.
Bird
,
R. B.
,
Stewart
,
W.
, and
Lightfoot
,
E.
,
2004
,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
20.
Sullivan
,
W. N.
, and
Sabersky
,
R. H.
,
1975
, “
Heat Transfer to Flowing Granular Media
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
97
107
.
21.
Stenberg
,
V.
,
Sköldberg
,
V.
,
Öhrby
,
L.
, and
Rydén
,
M.
,
2019
, “
Evaluation of Bed-to-Tube Surface Heat Transfer Coefficient for a Horizontal Tube in Bubbling Fluidized Bed at High Temperature
,”
Powder Technol.
,
352
, pp.
488
500
.
22.
Sih
,
S.
, and
Barlow
,
J.
,
2004
, “
The Prediction of the Emissivity and Thermal Conductivity of Powder Beds
,”
Part. Sci. Technol.
,
22
(
4
), pp.
427
440
.
23.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
2B
), pp.
220
222
.
24.
García
,
J.
,
Chean Soo Too
,
Y.
,
Vasquez Padilla
,
R.
,
Beath
,
A.
,
Kim
,
J.
, and
Sanjuan
,
M. E.
,
2018
, “
Multivariable Closed Control Loop Methodology for Heliostat Aiming Manipulation in Solar Central Receiver Systems
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031010
.
25.
Saade
,
E.
,
Clough
,
D. E.
, and
Weimer
,
A. W.
,
2013
, “
Use of Image-Based Direct Normal Irradiance Forecasts in the Model Predictive Control of a Solar-Thermal Reactor
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
010905
.
26.
Kumar
,
N.
, and
Sharma
,
A.
,
2021
, “
Design and Analysis of Nonlinear Controller for a Standalone Photovoltaic System Using Lyapunov Stability Theory
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011003
.
You do not currently have access to this content.