Abstract

This study presents a sensitivity analysis of the levelized cost of electricity (LCOE) for a particle-based system with the costs of the most current components. New models for the primary heat exchanger, thermal energy storage, and tower are presented and used to establish lower and upper bounds for these three components. The rest of component costs such as particle cost, cavity cost, and lift cost are set to lower and upper bounds estimating an uncertainty between 25% and 50%. Other relevant parameters related to lift and storage performance are also included in the analysis with the same uncertainty. This study also includes an upgrade to the receiver model by including the wind effect in the efficiency, which was not included in previous publications and may have a big impact in the system design. A parametric analysis shows the optimum values of solar multiple, storage hours, tower height, and concentration ratio, and a probabilistic analysis provides a cumulative distribution function for a range of LCOE values. The results show that the LCOE could be below $0.06/kWh with a probability of between 80% and 90%, where the costs of primary heat exchanger, particles, and lifts have largest contribution to the variance of the LCOE.

References

1.
Murphy
,
C.
,
Sun
,
Y.
,
Cole
,
W.
,
Maclaurin
,
G.
,
Turchi
,
C.
,
Mehos
,
M.
,
Murphy
,
C.
, et al
,
2019
, “
The Potential Role of Concentrating Solar Power within the Context of DOE’s 2030 Solar Cost Targets
,” NREL Technical Report, NREL/TP-6A20-71912, no. NREL/TP-6A20-71912.
2.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “
Concentrating Solar Power Gen3 Demonstration Roadmap
”, NREL Technical Report, NREL/TP-5500-67464.
3.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2017
, “
Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021011
.
4.
Wu
,
W.
,
Trebing
,
D.
,
Amsbeck
,
L.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2015
, “
Prototype Testing of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041011
.
5.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031014
.
6.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J. E.
,
Armijo
,
K.
,
Kolb
,
W. J.
,
Jeter
,
S.
,
Golob
,
M.
, and
Nguyen
,
C.
,
2019
, “
On-Sun Performance Evaluation of Alternative High-Temperature Falling Particle Receiver Designs
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011009
.
7.
Albrecht
,
K. J.
,
Bauer
,
M. L.
, and
Ho
,
C. K.
,
2019
, “
Parametric Analysis of Particle CSP System Performance and Cost to Intrinsic Particle Properties and Operating Conditions
,”
ASME 2019 13th International Conference on Energy Sustainability
,
Bellevue, WA
,
July 15–17
, ES2019-3893.
8.
González-Portillo
,
L. F.
,
Albrecht
,
K.
, and
Ho
,
C. K.
,
2021
, “
Techno-Economic Optimization of CSP Plants With Free-Falling Particle Receivers
,”
Entropy
,
23
(
1
), p.
76
.
9.
Engineering Equation Solver (EES version 10.836-3D)
.
F-chart software, Madison, WI (USA)
,
2021
.
10.
Dyreby
,
J.
,
2014
, “
Modeling the Supercritical Carbon Dioxide Brayton Cycle With Recompression
,”
PhD Thesis
,
The University of Wisconsin
,
Madison
.
11.
Gavic
,
D. J.
,
2012
, “
Investigation of Water, Air, and Hybrid Cooling for Supercritical Carbon Dioxide Brayton Cycles
,”
MSc Thesis
,
University of Wisconsin
,
Madison
.
12.
Wagner
,
M. J.
, and
Wendelin
,
T.
,
2018
, “
SolarPILOT: A Power Tower Solar Field Layout and Characterization Tool
,”
Sol. Energy
,
171
, pp.
185
196
.
13.
Neises
,
T.
, and
Turchi
,
C.
,
2019
, “
Supercritical Carbon Dioxide Power Cycle Design and Configuration Optimization to Minimize Levelized Cost of Energy of Molten Salt Power Towers Operating at 650 °C
,”
Sol. Energy
,
181
, pp.
27
36
.
14.
Sment
,
J.
,
Albrecht
,
K.
,
Martinez
,
M. J.
, and
Ho
,
C. K.
,
2019
, “
Design Considerations for a High-Temperature Particle Storage Bin
,” No. SAND2019-10293C.
Sandia National Laboratories
.
15.
González-Portillo
,
L. F.
,
Muñoz-Antón
,
J.
, and
Martínez-Val
,
J. M.
,
2017
, “
An Analytical Optimization of Thermal Energy Storage for Electricity Cost Reduction in Solar Thermal Electric Plants
,”
Appl. Energy
,
185
, pp.
531
546
.
16.
Mills
,
B.
, and
Ho
,
C. K.
,
2018
, “
Simulation and Performance Evaluation of on-sun Particle Receiver Tests
,”
AIP Conference Proceedings SolarPACES 2018
,
Casablanca, Morocco
,
2–5
, Vol.
2126
.
17.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
, pp.
958
969
.
18.
Cleal
,
M.
, and
Ho
,
C. K.
,
2020
, “
Modeling Thermal Transients of Bulk Particle Lifting Systems with CFD Simulations
,”
SolarPACES2020 Conference
,
28–30
, Online.
19.
Weiland
,
N. T.
,
Lance
,
B. W.
, and
Pidaparti
,
S. R.
,
2019
, “
SCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications
,”
Proceedings of the ASME Turbo Expo, Vol. 9
, pp.
1
17
.
20.
Mehos
,
M.
,
Turchi
,
C.
,
Jorgenson
,
J.
,
Denholm
,
P.
,
Ho
,
C.
, and
Armijo
,
K.
,
2016
, “
On the Path to SunShot: Advancing Concentrating Solar Power Technology, Performance, and Dispatchability
,” Technical Report NREL/TP-5500-65688, SAND2016-2237 R.
21.
Buck
,
R.
, and
Giuliano
,
S.
,
2018
, “
Impact of Solar Tower Design Parameters on sco2-Based Solar Tower Plants
,”
2nd European Supercritical CO2 Conference
,
Essen, Germany
,
30–31
.
22.
System Advisor Model Version 2020.11.29 (SAM 2020.11.29)
.
National Renewable Energy Laboratory
.
Golden, CO
,
2020
.
23.
Weinrebe
,
G.
,
Giuliano
,
S.
,
Buck
,
R.
,
Macke
,
A.
,
Burghartz
,
A.
,
Nieffer
,
D.
,
Gross
,
F.
,
Rong
,
A.
,
Schlichting
,
T.
, and
Blume
,
K.
,
2019
, “
HELIKONTURplus—Kostensenkung bei Solarturmkraftwerken durch optimeierte Heliostatkonturen plus angepasstes Turm- und Felddesign
”, Project Report FKZ0324053 (sbp, DLR, CSP Services). .
24.
Repole
,
K. K. D.
, and
Jeter
,
S. M.
,
2016
, “
Design and Analysis of a High Temperature Particulate Hoist for Proposed Particle Heating Concentrator Solar Power Systems
,”
ASME 2016 10th International Conference on Energy Sustainability
,
Charlotte NC,
26–30
.
25.
Muñoz
,
J.
,
Martinez-Val
,
J. M.
, and
Ramos
,
A.
,
2011
, “
Thermal Regimes in Solar-Thermal Linear Collectors
,”
Sol. Energy
,
85
(
5
), pp.
857
870
.
You do not currently have access to this content.