Abstract

Fouling is detrimental to the heat transfer performance of concentrated solar power plant components where heat exchange takes place with the cooling tower water. Wave elements cause an expression of deep insight of the fouling formation. A new physical concept of wave element is proposed; it is the wave interface between two molecule groups with an infinitesimal temperature difference in fluid. It is generated by density difference, which results from temperature difference. Tiny temperature differences always exist everywhere in a fluid. When a fluid is in motion, wave elements are generated among molecule groups. Wave motion and Brownian motion can serve as the two basic forms of motion of the molecules in flow. Temperature controls Brownian motion. Temperature differences and the fluid's motion cause the wave elements. Nonequilibrium thermal fluctuations present as wave elements in a flow. A wave element appears as wave behavior along the space and time dimensions that are based on the continuity relation. The direct experimental evidence for wave elements cannot be directly established at the present scientific testing cap ability because the temperature difference of two molecule groups adjoining each other in a flow is infinitesimal. A series of “enlarged size” experiments are conducted involving the cooling tower water fouling to show the wave elements’ behaviors by tracing the molecules’ movement. The experimental study presents that the wave interface along the space and time dimensions simultaneously exists between two densities due to fluid motion. The experimental evidence and theoretical analysis support each other.

References

1.
Shahabuddin
,
M.
,
Alim
,
M. A.
,
Alam
,
T.
,
Mofijur
,
M.
,
Ahmed
,
S. F.
, and
Perkins
,
G.
,
2021
, “
A Critical Review on the Development and Challenges of Concentrated Solar Power Technologies
,”
Sustain. Energy Technol. Assess.
,
47
, p.
101434
.
2.
Alshahrani
,
S.
, and
Engeda
,
A.
,
2021
, “
Performance Analysis of a Solar–Biogas Hybrid Micro Gas Turbine for Power Generation
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021007
.
3.
Sivaram
,
P. M.
,
Dinesh Kumar
,
S.
,
Premalatha
,
M.
,
Sivasankar
,
T.
, and
Arunagiri
,
A.
,
2020
, “
Experimental Investigation on Airflow and Water Production in the Integrated Rooftop Solar Thermal System
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031006
.
4.
Kumar
,
R.
,
Kashyap
,
A. S.
,
Singh
,
P.
,
Goel
,
V.
, and
Kumar
,
K.
,
2020
, “
Innovatively Arranged Curved-Ribbed Solar-Assisted Air Heater: Performance and Correlation Development for Heat and Flow Characteristics
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031011
.
5.
Pal
,
P.
, and
Dev
,
R.
,
2019
, “
Thermal Modeling, Experimental Validation, and Comparative Analysis of Modified Solar Stills
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061013
.
6.
Zaza
,
A.
,
Bennouna
,
E. G.
,
Laadel
,
N. E.
, and
El Hammami
,
Y.
,
2021
, “
Experimental Study of Fouling in Hybrid Cooling Tower Used in CSP Plants: Effects of the Polymer and Galvanized Steel Tubes
,”
Ther. Sci. Eng. Prog.
,
25
, p.
101005
.
7.
Martin
,
L.
, and
Martin
,
M.
,
2013
, “
Optimal Year-Round Operation of a Concentrated Solar Energy Plant in the South of Europe
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
627
633
.
8.
Ding
,
Z.
,
Li
,
W.
,
Wang
,
L.
,
Zhao
,
L.
,
Sherif
,
S. A.
,
Wang
,
R.
, and
Kabelac
,
S.
,
2022
, “
Experimental Study on CaCO3 Fouling Characteristics During Falling Film Evaporation
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021005
.
9.
Zhu
,
L. Y.
,
Wang
,
Q. G.
,
Ding
,
Z. K.
,
Li
,
W.
,
Zhao
,
L. M.
, and
Sherif
,
S. A.
,
2022
, “
Analysis of Fouling on Nano-Composite Surfaces in Plate Heat Exchangers
,”
ASME J. Sol. Energy Eng.
(in press).
10.
Webb
,
R. L.
, and
Li
,
W.
,
2000
, “
Fouling in Enhanced Tubes Using Cooling Tower Water: Part I: Long-Term Fouling Data
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3567
3578
.
11.
Zhang
,
G. M.
,
Li
,
G. Q.
,
Li
,
W.
,
Zhang
,
Z. Y.
,
Leng
,
X. L.
, and
Tian
,
M. C.
,
2013
, “
Particulate Fouling and Composite Fouling Assessment in Corrugated Plate Heat Exchangers
,”
Int. J. Heat Mass Transf.
,
60
, pp.
263
273
.
12.
Li
,
W.
, and
Webb
,
R. L.
,
2002
, “
Fouling Characteristics of Internal Helical-Rib Roughness Tubes Using Low-Velocity Cooling Tower Water
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1685
1691
.
13.
Li
,
W.
,
2003
, “
The Performances of Internal Helical-Rib Roughness Tubes Under Fouling Conditions: Practical Cooling Tower Water Fouling and Accelerated Particulate Fouling
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
746
748
.
14.
Li
,
W.
,
Zhou
,
K.
,
Manglik
,
R. M.
,
Li
,
G. Q.
, and
Bergles
,
A. E.
,
2016
, “
Investigation of CACO3 Fouling in Plate Heat Exchangers
,”
Heat Mass Transfer
,
52
(
11
), pp.
2401
2414
.
15.
Li
,
W.
,
Li
,
H. X.
,
Li
,
G. Q.
, and
Yao
,
S. C.
,
2013
, “
Numerical and Experimental Analysis of Composite Fouling in Corrugated Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
63
, pp.
351
360
. j.ijheatmasstransfer.2013.03.073
16.
Li
,
W.
,
2010
, “
Wave Surface of Boundary Layer
,”
Exp. Therm. Fluid. Sci.
,
34
(
7
), pp.
838
844
.
17.
Li
,
W.
,
2007
, “
Wave Surface of Thermal Layer
,”
ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
,
Vancouver, British Columbia, Canada
,
July 8–12
, p.
1
.
18.
White
,
F. M.
,
2003
,
Fluid Mechanics
, 5th ed.,
McGraw-Hill
,
New York
, p.
345
.
19.
Zhou
,
Y.
,
Robey
,
H. F.
, and
Buckingham
,
A. C.
,
2003
, “
Onset of Turbulence in Accelerated High-Reynolds-Number Flow
,”
Phys. Rev. E
,
67
(
5
), p.
11
.
20.
Werne
,
J.
,
1994
, “
Plume Model for the Boundary-Layer Dynamics in Hard Turbulence
,”
Phys. Rev. E
,
49
(
5
), pp.
4072
4076
.
21.
Jaw
,
S. Y.
,
Chen
,
C. J.
, and
Hwang
,
R. R.
,
2007
, “
Flow Visualization of Bubble Collapse Flow
,”
J. Vis.
,
10
(
1
), pp.
21
24
.
22.
Petsi
,
A. J.
, and
Burganos
,
V. N.
,
2006
, “
Evaporation-Induced Flow in an Inviscid Liquid Line at Any Contact Angle
,”
Phys. Rev. E
,
73
(
4
), p.
9
. PhysRevE.73.041201
23.
Nomura
,
K. K.
, and
Elghobashi
,
S. E.
,
1993
, “
The Structure of Inhomogeneous Turbulence in Variable Density Nonpremixed Flames
,”
Theor. Comput. Fluid Dyn.
,
5
(
4
), pp.
153
175
.
24.
Wu
,
W.
, and
Wang
,
J.
,
2020
, “
Nonequilibrium Thermodynamics of Turbulence and Stochastic Fluid Systems
,”
New J. Phys.
,
22
(
11
), p.
21
.
25.
Eyink
,
G. L.
, and
Drivas
,
T. D.
,
2018
, “
Cascades and Dissipative Anomalies in Compressible Fluid Turbulence
,”
Phys. Rev. X.
,
8
(
1
), p.
39
.
26.
Ozawa
,
H.
,
Shimokawa
,
S.
, and
Sakuma
,
H.
,
2001
, “
Thermodynamics of Fluid Turbulence: A Unified Approach to the Maximum Transport Properties
,”
Phys. Rev. E
,
64
(
2
), p.
8
.
27.
Ozawa
,
H.
,
Ohmura
,
A.
,
Lorenz
,
R. D.
, and
Pujol
,
T.
,
2003
, “
The Second Law of Thermodynamics and the Global Climate System: A Review of the Maximum Entropy Production Principle
,”
Rev. Geophys.
,
41
(
4
), p.
24
.
28.
Tome
,
T.
, and
de Oliveira
,
M. J.
,
2012
, “
Entropy Production in Nonequilibrium Systems at Stationary States
,”
Phys. Rev. Lett.
,
108
(
2
), p.
5
.
29.
Santillán
,
M.
, and
Qian
,
H.
,
2013
, “
Stochastic Thermodynamics Across Scales: Emergent Inter-Attractoral Discrete Markov Jump Process and Its Underlying Continuous Diffusion
,”
Phys. A
,
392
(
1
), pp.
123
135
.
30.
Bai
,
H.
,
Zhu
,
J.
,
Chu
,
J.
,
Chen
,
X.
,
Cui
,
Y.
, and
Yan
,
Y.
,
2019
, “
Influences of the Mixed LiCl-CaCl2 Liquid Desiccant Solution on a Membrane-Based Dehumidification System: Parametric Analysis and Mixing Ratio Selection
,”
Energy Build.
,
183
, pp.
592
606
.
31.
Van den Broeck
,
C.
, and
Esposito
,
M.
,
2010
, “
Three Faces of the Second Law. II. Fokker-Planck Formulation
,”
Phys. Rev. E
,
82
(
1
), p.
7
.
32.
Wu
,
W.
, and
Wang
,
J.
,
2014
, “
Potential and Flux Field Landscape Theory. II. Non-Equilibrium Thermodynamics of Spatially Inhomogeneous Stochastic Dynamical Systems
,”
J. Chem. Phys.
,
141
(
10
), p.
47
.
33.
Li
,
W.
, and
Webb
,
R. L.
,
2000
, “
Fouling in Enhanced Tubes Using Cooling Tower Water: Part II: Combined Particulate and Precipitation Fouling
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3579
3588
.
34.
Bott
,
T. R.
,
1995
,
Fouling of Heat Exchangers
,
Elsevier
,
New York
.
35.
Papavergos
,
P. G.
, and
Hedley
,
A. B.
,
1984
, “
Particle Deposition Behavior From Turbulent Flows
,”
Chem. Eng. Res. Des.
,
62
(
5
), pp.
275
295
. 0263-8762
36.
Newson
,
I. H.
,
Bott
,
T. R.
, and
Hussain
,
C. I.
,
1983
, “
Studies of Magnetite Deposition From a Flowing Suspension
,”
Chem. Eng. Commun.
,
20
(
5–6
), pp.
335
353
.
37.
Cremaschi
,
L.
,
Spitler
,
J. D.
,
Lim
,
E.
, and
Ramesh
,
A.
,
2011
, “
Waterside Fouling Performance in Brazed-Plate-Type Condensers for Cooling Tower Applications
,”
HVAC&R Res.
,
17
(
2
), pp.
198
217
.
You do not currently have access to this content.