Abstract

Increased temperature of photovoltaic (PV) module decreases its performance; hence, integration of the cooling system is imperative in minimizing this detrimental effect. In this study, passive cooling of PV module with different heatsinks has been simulated by thermal models using ansys steady-state thermal software. The results were based on the effect of convective heat transfer coefficients from 5 to 1000 W/m2K for the temperature reduction of PV module using 19 different heatsinks. Three configurations: flat plate heat spreader, fin-only heatsinks, and fin-flat base plate combined heatsinks, have been studied at 35 °C ambient temperature and 800 W/m2 solar radiation. The result shows that at convective heat transfer coefficient of 10 W/m2K, the combined type model C7, and the fin-only type model B4 demonstrated around 18.94% and 9.36% lower PV cell temperature, respectively, than the flat plate type model A2. Moreover, C7 and B4 models had about 67.5% and 78.03% less material weight than the A2 model, making the heat spreader type least feasible compared with the other two. The temperature contours of the PV cell layer at a given operating condition showed uniform distribution for both flat plate types and combined types. In contrast, the fin-only heatsink configuration illustrated hotspots within the PV cell layer.

References

1.
Salehi
,
S.
,
Yari
,
M.
, and
Rosen
,
M. A.
,
2019
, “
Exergoeconomic Comparison of Solar-Assisted Absorption Heat Pumps, Solar Heaters and Gas Boiler Systems for District Heating in Sarein Town, Iran
,”
Appl. Therm. Eng.
,
153
, pp.
409
425
.
2.
Pang
,
W.
,
Zhang
,
Q.
,
Wilson
,
G. J.
,
Yang
,
Q.
, and
Yan
,
H.
,
2020
, “
Empirical Influence of Various Environmental Conditions and Mass FLow Rates on Hybrid Photovoltaic Thermal Modules
,”
Appl. Therm. Eng.
,
171
, p.
114965
.
3.
Guarracino
,
I.
,
Mellor
,
A.
,
Ekins-daukes
,
N. J.
, and
Markides
,
C. N.
,
2016
, “
Dynamic Coupled Thermal-and-Electrical Modelling of Sheet-and-Tube Hybrid Photovoltaic/Thermal (PVT) Collectors
,”
Appl. Therm. Eng.
,
101
, pp.
778
795
.
4.
Muhammad
,
M. J.
,
Muhammad
,
I. A.
,
Sidik
,
N. A. C.
, and
Yazid
,
M. N. A. W. M.
,
2016
, “
Thermal Performance Enhancement of Flat-Plate and Evacuated Tube Solar Collectors Using Nanofluid: A Review
,”
Int. Commun. Heat Mass Trans.
,
76
, pp.
6
15
.
5.
Skoplaki
,
E.
,
Boudouvis
,
A. G.
, and
Palyvos
,
J. A.
,
2008
, “
A Simple Correlation for the Operating Temperature of Photovoltaic Modules of Arbitrary Mounting
,”
Sol. Energy Mater. Sol. Cells
,
92
(
11
), pp.
1393
1402
.
6.
Bayrak
,
F.
,
2017
, “
The Numerical and Experimental Analysis of System Efficiency Effects of Different Passive Methods in Integrated Photovoltaic Panels
,”
Firat University
.
7.
Zhou
,
J.
,
Zhang
,
Z.
,
Liu
,
H.
, and
Yi
,
Q.
,
2017
, “
Temperature Distribution and Back Sheet Role of Polycrystalline Silicon Photovoltaic Modules
,”
Appl. Therm. Eng.
,
111
, pp.
1296
1303
.
8.
Brinkworth
,
B. J.
,
2002
, “
Coupling of Convective and Radiative Heat Transfer in PV Cooling Ducts
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
250
255
.
9.
Sargunanathan
,
S.
,
Elango
,
A.
, and
Mohideen
,
S. T.
,
2016
, “
Performance Enhancement of Solar Photovoltaic Cells Using Effective Cooling Methods: A Review
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
382
393
.
10.
Romantchik
,
E.
,
Ríos
,
E.
,
Sánchez
,
E.
,
López
,
I.
, and
Reyes
,
J.
,
2017
, “
Determination of Energy to be Supplied by Photovoltaic Systems for Fan-Pad Systems in Cooling Process of Greenhouses
,”
Appl. Therm. Eng.
,
114
, pp.
1161
1168
.
11.
Grubi
,
F.
,
Ni
,
S.
, and
Papadopoulos
,
A.
,
2020
, “
Techno-Economic and Environmental Evaluation of Passive Cooled Photovoltaic Systems in Mediterranean Climate Conditions
,”
Appl. Therm. Eng.
,
169
, p.
114947
.
12.
Shinde
,
A.
,
Arpit
,
S.
,
Km
,
P.
,
Rao
,
P. V. C.
, and
Saha
,
S. K.
,
2017
, “
Heat Transfer Characterization and Optimization of Latent Heat Thermal Storage System Using Fins for Medium Temperature Solar Applications
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031003
.
13.
Abdollahi
,
N.
, and
Rahimi
,
M.
,
2020
, “
Using a Novel Phase Change Material-Based Cooling Tower for a Photovoltaic Module Cooling
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021003
.
14.
Chantawong
,
P.
,
2019
, “
Experimental Investigation of Thermal Performance of a Multipurpose PV Solar Collector Wall With Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
064501
.
15.
Magare
,
D.
,
Sastry
,
O.
,
Gupta
,
R.
,
Bora
,
B.
,
Singh
,
Y.
, and
Mohammed
,
H.
,
2018
, “
Wind Effect Modeling and Analysis for Estimation of Photovoltaic Module Temperature
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011008
.
16.
Gotmare
,
J. A.
,
Borkar
,
D. S.
, and
Hatwar
,
P. R.
,
2015
, “
Experimental Investigation of PV Panel With Fin Cooling Under Natural Convection
,”
Int. J. Adv. Technol. Eng. Sci.
,
3
(
2
), pp.
447
454
.
17.
Hudisteanu
,
S.
,
Mateescu
,
T.
,
Popovici
,
C.
, and
Chereces
,
N.-C.
,
2015
, “
Numerical Study of Air Cooling Photovoltaic Panels Using Heat Sinks
,”
Rom. J. Civ. Eng.
,
6
(
1
), pp.
11
21
.
18.
Marco Tina
,
G.
,
2017
, “
Simulation Model of Photovoltaic and Photovoltaic/Thermal Module/String Under Nonuniform Distribution of Irradiance and Temperature
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021013
.
19.
Cuce
,
E.
,
Bali
,
T.
, and
Sekucoglu
,
S. A.
,
2011
, “
Effects of Passive Cooling on Performance of Silicon Photovoltaic Cells
,”
Int. J. Low-Carbon Technol.
,
6
(
4
), pp.
299
308
.
20.
El Mays
,
A.
,
Ammar
,
R.
,
Hawa
,
M.
,
Akroush
,
M. A.
,
Hachem
,
F.
,
Khaled
,
M.
, and
Ramadan
,
M.
,
2017
, “
Improving Photovoltaic Panel Using Finned Plate of Aluminum
,”
Energy Procedia
,
119
, pp.
812
817
.
21.
Hasan
,
I. A.
,
2018
, “
Enhancement the Performance of PV Panel by Using Fins as Heat Sink
,”
Eng. Technol. J.
,
36
(
7 Part A
), pp.
798
805
.
22.
Chen
,
H.
,
Chen
,
X.
,
Li
,
S.
, and
Ding
,
H.
,
2014
, “
Comparative Study on the Performance Improvement of Photovoltaic Panel With Passive Cooling Under Natural Ventilation
,”
Int. J. Smart Grid Clean Energy
,
3
(
4
), pp.
374
379
.
23.
Amr
,
A. A.-R.
,
Hassan
,
A. A. M.
,
Abdel-Salam
,
M.
, and
El-Sayed
,
A. H. M.
,
2019
, “
Enhancement of Photovoltaic System Performance via Passive Cooling: Theory Versus Experiment
,”
Renewable Energy
,
140
, pp.
88
103
.
24.
Popovici
,
C. G.
,
Hudişteanu
,
S. V.
,
Mateescu
,
T. D.
, and
Cherecheş
,
N. C.
,
2016
, “
Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks
,”
Energy Procedia
,
85
, pp.
425
432
.
25.
Arifin
,
Z.
,
Tjahjana
,
D. D. D. P.
,
Hadi
,
S.
,
Rachmanto
,
R. A.
,
Setyohandoko
,
G.
, and
Sutanto
,
B.
,
2020
, “
Numerical and Experimental Investigation of Air Cooling for Photovoltaic Panels Using Aluminum Heat Sinks
,”
Int. J. Photoenergy
,
2020
, pp.
1
9
.
26.
Soliman
,
A. M. A.
,
Hassan
,
H.
,
Ahmed
,
M.
, and
Ookawara
,
S.
,
2020
, “
A 3d Model of the Effect of Using Heat Spreader on the Performance of Photovoltaic Panel (PV)
,”
Math. Comput. Simul.
,
167
, pp.
78
91
.
27.
Jobair
,
H. K.
,
2017
, “
Improving of Photovoltaic Cell Performance by Cooling Using Two Different Types of Fins
,”
Int. J. Comput. Appl.
,
157
(
5
), pp.
6
15
.
28.
Kim
,
J.
, and
Nam
,
Y.
,
2019
, “
Study on the Cooling Effect of Attached Fins on PV Using CFD Simulation
,”
Energies.
,
12
(
4
), p.
758
.
29.
Grubišić-Čabo
,
F.
,
Nižetić
,
S.
,
Čoko
,
D.
,
Marinić Kragić
,
I.
, and
Papadopoulos
,
A.
,
2018
, “
Experimental Investigation of the Passive Cooled Free-Standing Photovoltaic Panel With Fixed Aluminum Fins on the Backside Surface
,”
J. Cleaner Prod.
,
176
, pp.
119
129
.
30.
Bayrak
,
F.
,
Oztop
,
H. F.
, and
Selimefendigil
,
F.
,
2019
, “
Effects of Different Fin Parameters on Temperature and Efficiency for Cooling of Photovoltaic Panels Under Natural Convection
,”
Sol. Energy
,
188
, pp.
484
494
.
31.
Hegazy
,
A. A.
,
2000
, “
Comparative Study of the Performances of Four Photovoltaic/Thermal Solar Air Collectors
,”
Energy Convers. Manage
,
41
(
8
), pp.
861
881
.
32.
Hamrouni
,
N.
,
Jraidi
,
M.
, and
Chérif
,
A.
,
2008
, “
Solar Radiation and Ambient Temperature Effects on the Performances of a PV Pumping System
,”
Renewable Energy Rev.
,
11
(
1
), pp.
95
106
.
33.
Armstrong
,
S.
, and
Hurley
,
W. G.
,
2010
, “
A Thermal Model for Photovoltaic Panels Under Varying Atmospheric Conditions
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1488
1495
.
34.
Jooß
,
W.
,
2002
,
Multicrystalline and Back Contact Buried Contact Silicon Solar Cells
,
Universität Konstanz
. http://kops.uni-konstanz.de/handle/123456789/9116
35.
Nahar
,
A.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2017
, “
A 3D Comprehensive Numerical Investigation of Different Operating Parameters on the Performance of a PVT System With Pancake Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031009
.
36.
Lu
,
S.
,
Liu
,
J.
,
Lin
,
G.
, and
Zhang
,
P.
,
2017
, “
Modified Scaled Boundary Finite Element Analysis of 3D Steady-State Heat Conduction in Anisotropic Layered Media
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2462
2471
.
37.
Notton
,
G.
,
Cristofari
,
C.
,
Mattei
,
M.
, and
Poggi
,
P.
,
2005
, “
Modelling of a Double-Glass Photovoltaic Module Using Finite Differences
,”
Appl. Therm. Eng.
,
25
(
17–18
), pp.
2854
2877
.
38.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
39.
Zhou
,
J.
,
Yi
,
Q.
,
Wang
,
Y.
, and
Ye
,
Z.
,
2015
, “
Temperature Distribution of Photovoltaic Module Based on Finite Element Simulation
,”
Sol. Energy
,
111
, pp.
97
103
.
40.
Zondag
,
H. A.
,
2008
, “
Flat-Plate PV-Thermal Collectors and Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
12
(
4
), pp.
891
959
.
You do not currently have access to this content.