Abstract

In response to the global quest for a sustainable and environmentally friendly source of energy, most scientists’ discretion is solar energy, especially solar thermal. However, successful deployment of solar thermal technologies such as solar-assisted process heating (SAPH) systems in medium- to large-scale industries is still in quandary due to their inefficacy in raising ample temperatures. Cascaded SAPH system, which is essentially a series combination of two same or different types of thermal collectors, may provide a worthwhile solution to this problem. In this article, performance assessment and comparison of two cascaded SAPH systems have been presented: photovoltaic thermal (PVT) cascaded with flat-plate collector (PVT-FPC) and PVT coupled with heat pipe evacuated tube collector (PVT-HPETC). Simulation models have been presented for individual FPC, HPETC, and PVT as well as PVT cascaded with FPC and HPETC systems in TRNSYS and validated through outdoor experimentation. Both the first and the second laws of thermodynamics have been employed to reveal veritable performance of the systems. Results show that PVT-HPETC delivers better performance with 1625 W thermal energy, 81.59% energy efficiency, and 13.22% exergy efficiency. It cuts 1.37 kg of CO2 on an hourly basis. Cascaded systems can be effective in sustaining industrial process heat requirements.

References

1.
Hosenuzzaman
,
M.
,
Rahim
,
N. A.
,
Selvaraj
,
J.
,
Hasanuzzaman
,
M.
,
Malek
,
A. B. M. A.
, and
Nahar
,
A.
,
2015
, “
Global Prospects, Progress, Policies, and Environmental Impact of Solar Photovoltaic Power Generation
,”
Renew. Sustain. Energy Rev.
,
41
, pp.
284
297
.
2.
Kumar
,
R.
, and
Rosen
,
M. A.
,
2011
, “
A Critical Review of Photovoltaic-Thermal Solar Collectors for Air Heating
,”
Appl. Energy
,
88
(
11
), pp.
3603
3614
.
3.
IPCC, Climate Change
,
2014
, “
Synthesis Report. Contribution of Working Groups I, II, III to the Fifth Assessment Report
,”
Intergovernmental Panel on Climate Change (IPCC)
, p.
151
(10.1017).
4.
Sokhansefat
,
T.
,
Kasaeian
,
A.
,
Rahmani
,
K.
,
Heidari
,
A. H.
,
Aghakhani
,
F.
, and
Mahian
,
O.
,
2018
, “
Thermoeconomic and Environmental Analysis of Solar Flat Plate and Evacuated Tube Collectors in Cold Climatic Conditions
,”
Renew. Energy
,
115
, pp.
501
508
.
5.
Nahar
,
A.
,
Hasanuzzaman
,
M.
,
Rahim
,
N. A.
, and
Parvin
,
S.
,
2019
, “
Numerical Investigation on the Effect of Different Parameters in Enhancing Heat Transfer Performance of Photovoltaic Thermal Systems
,”
Renew. Energy
,
132
, pp.
284
295
.
6.
Fayaz
,
H.
,
Rahim
,
N. A.
,
Hasanuzzaman
,
M.
,
Rivai
,
A.
, and
Nasrin
,
R.
,
2019
, “
Numerical and Outdoor Real-Time Experimental Investigation of Performance of PCM Based PVT System
,”
Sol. Energy
,
179
, pp.
135
150
.
7.
Ma
,
T.
,
Yang
,
H.
, and
Lu
,
L.
,
2014
, “
Solar Photovoltaic System Modeling and Performance Prediction
,”
Renew. Sustain. Energy Rev.
,
36
, pp.
304
315
.
8.
Hasanuzzaman
,
M.
,
Malek
,
A. B. M. A.
,
Islam
,
M. M.
,
Pandey
,
A. K.
, and
Rahim
,
N. A.
,
2016
, “
Global Advancement of Cooling Technologies for PV Systems: A Review
,”
Sol. Energy
,
137
, pp.
25
45
.
9.
Kumar
,
L.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2019
, “
Global Advancement of Solar Thermal Energy Technologies for Industrial Process Heat and Its Future Prospects: A Review
,”
Energy Convers. Manage.
,
195
, pp.
885
908
.
10.
Baniassadi
,
A.
,
Momen
,
M.
,
Amidpour
,
M.
, and
Pourali
,
O.
,
2018
, “
Modeling and Design of Solar Heat Integration in Process Industries With Heat Storage
,”
J. Cleaner Prod.
,
170
, pp.
522
534
.
11.
Schoeneberger
,
C. A.
,
McMillan
,
C. A.
,
Kurup
,
P.
,
Akar
,
S.
,
Margolis
,
R.
, and
Masanet
,
E.
,
2020
, “
Solar for Industrial Process Heat: A Review of Technologies, Analysis Approaches, and Potential Applications in the United States
,”
Energy
,
206
, p.
118083
.
12.
Kumar
,
L.
,
Hasanuzzaman
,
M.
,
Rahim
,
N. A.
, and
Islam
,
M. M.
,
2021
, “
Modeling, Simulation and Outdoor Experimental Performance Analysis of a Solar-Assisted Process Heating System for Industrial Process Heat
,”
Renew. Energy
,
164
, pp.
656
673
.
13.
Li
,
M.
,
Zhong
,
D.
,
Ma
,
T.
,
Kazemian
,
A.
, and
Gu
,
W.
,
2020
, “
Photovoltaic Thermal Module and Solar Thermal Collector Connected in Series: Energy and Exergy Analysis
,”
Energy Convers. Manage.
,
206
, p.
112479
.
14.
Sardarabadi
,
M.
,
Hosseinzadeh
,
M.
,
Kazemian
,
A.
, and
Passandideh-Fard
,
M.
,
2017
, “
Experimental Investigation of the Effects of Using Metal-Oxides/Water Nanofluids on a Photovoltaic Thermal System (PVT) From Energy and Exergy Viewpoints
,”
Energy
,
138
, pp.
682
695
.
15.
Khanjari
,
Y.
,
Pourfayaz
,
F.
, and
Kasaeian
,
A. B.
,
2016
, “
Numerical Investigation on Using of Nanofluid in a Water-Cooled Photovoltaic Thermal System
,”
Energy Convers. Manage.
,
122
, pp.
263
278
.
16.
Abd El-Hamid
,
M.
,
Wei
,
G.
,
Sherin
,
M.
,
Cui
,
L.
, and
Du
,
X.
,
2021
, “
Comparative Study of Different Photovoltaic/Thermal Hybrid Configurations From Energetic and Exergetic Points of View: A Numerical Analysis
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061006
.
17.
Gholampour
,
M.
, and
Ameri
,
M.
,
2014
, “
Energy and Exergy Study of Effective Parameters on Performance of Photovoltaic/Thermal Natural Air Collectors
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031001
.
18.
Tong
,
Y.
,
Lee
,
H.
,
Kang
,
W.
, and
Cho
,
H.
,
2019
, “
Energy and Exergy Comparison of a Flat-Plate Solar Collector Using Water, Al2O3 Nanofluid, and CuO Nanofluid
,”
Appl. Therm. Eng.
,
159
, p.
113959
.
19.
Abuşka
,
M.
, and
Şevik
,
S.
,
2017
, “
Energy, Exergy, Economic and Environmental (4E) Analyses of Flat-Plate and V-Groove Solar Air Collectors Based on Aluminium and Copper
,”
Sol. Energy
,
158
, pp.
259
277
.
20.
Kazemian
,
A.
,
Taheri
,
A.
,
Sardarabadi
,
A.
,
Ma
,
T.
,
Passandideh-Fard
,
M.
, and
Peng
,
J.
,
2020
, “
Energy, Exergy and Environmental Analysis of Glazed and Unglazed PVT System Integrated With Phase Change Material: An Experimental Approach
,”
Sol. Energy
,
201
, pp.
178
189
.
21.
Kazemian
,
A.
,
Hosseinzadeh
,
M.
,
Sardarabadi
,
M.
, and
Passandideh-Fard
,
M.
,
2018
, “
Effect of Glass Cover and Working Fluid on the Performance of Photovoltaic Thermal (PVT) System: An Experimental Study
,”
Sol. Energy
,
173
, pp.
1002
1010
.
22.
Kazemian
,
A.
,
Hosseinzadeh
,
M.
,
Sardarabadi
,
M.
, and
Passandideh-Fard
,
M.
,
2018
, “
Experimental Study of Using Both Ethylene Glycol and Phase Change Material as Coolant in Photovoltaic Thermal Systems (PVT) From Energy, Exergy and Entropy Generation Viewpoints
,”
Energy
,
162
, pp.
210
223
.
23.
Chen
,
J. F.
,
Zhang
,
L.
, and
Dai
,
Y. J.
,
2018
, “
Performance Analysis and Multi-Objective Optimization of a Hybrid Photovoltaic/Thermal Collector for Domestic Hot Water Application
,”
Energy
,
143
, pp.
500
516
.
24.
Guarracino
,
I.
,
Freeman
,
J.
,
Ramos
,
A.
,
Kalogirou
,
S. A.
,
Ekins-Daukes
,
N. J.
, and
Markides
,
C. N.
,
2019
, “
Systematic Testing of Hybrid PV-Thermal (PVT) Solar Collectors in Steady-State and Dynamic Outdoor Conditions
,”
Appl. Energy
,
240
, pp.
1014
1030
.
25.
Asanakham
,
A.
, and
Deethayat
,
T.
,
2020
, “
Performance Analysis of PV/T Modules With and Without Glass Cover and Effect of Mass Flow Rate on Electricity and Hot Water Generation
,”
Energy Rep.
,
6
, pp.
558
564
.
26.
Nahar
,
A.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2017
, “
A Three-Dimensional Comprehensive Numerical Investigation of Different Operating Parameters on the Performance of a Photovoltaic Thermal System With Pancake Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031009
.
27.
Chen
,
F.
,
Hu
,
M.
,
Badiei
,
A.
,
Yu
,
M.
,
Huang
,
Z.
,
Wang
,
Z.
, and
Zhao
,
X.
,
2020
, “
Experimental and Numerical Investigation of a Novel Photovoltaic/Thermal System Using Micro-Channel Flat Loop Heat Pipe (PV/T-MCFLHP)
,”
Int. J. Low Carbon Technol.
,
15
(
4
), pp.
513
527
.
28.
Rejeb
,
O.
,
Gaillard
,
L.
,
Giroux-Julien
,
S.
,
Ghenai
,
C.
,
Jemni
,
A.
,
Bettayeb
,
M.
, and
Menezo
,
C.
,
2020
, “
Novel Solar PV/Thermal Collector Design for the Enhancement of Thermal and Electrical Performances
,”
Renew. Energy
,
146
, pp.
610
627
.
29.
Herrando
,
M.
,
Ramos
,
A.
,
Zabalza
,
I.
, and
Markides
,
C. N.
,
2019
, “
A Comprehensive Assessment of Alternative Absorber-Exchanger Designs for Hybrid PVT-Water Collectors
,”
Appl. Energy
,
235
, pp.
1583
1602
.
30.
Sabiha
,
M. A.
,
Saidur
,
R.
,
Hassani
,
S.
,
Said
,
Z.
, and
Mekhilef
,
S.
,
2015
, “
Energy Performance of an Evacuated Tube Solar Collector Using Single Walled Carbon Nanotubes Nanofluids
,”
Energy Convers. Manage.
,
105
, pp.
1377
1388
.
31.
Gunjo
,
D. G.
,
Mahanta
,
P.
, and
Robi
,
P. S.
,
2017
, “
Exergy and Energy Analysis of a Novel Type Solar Collector Under Steady State Condition: Experimental and CFD Analysis
,”
Renew. Energy
,
114
, pp.
655
669
.
32.
Kalogirou
,
S. A.
,
Karellas
,
S.
,
Braimakis
,
K.
,
Stanciu
,
C.
, and
Badescu
,
V.
,
2016
, “
Exergy Analysis of Solar Thermal Collectors and Processes
,”
Prog. Energy Combust. Sci.
,
56
, pp.
106
137
.
33.
Sharafeldin
,
M. A.
, and
Gróf
,
G.
,
2019
, “
Efficiency of Evacuated Tube Solar Collector Using WO3/Water Nanofluid
,”
Renew. Energy
,
134
, pp.
453
460
.
34.
Ayompe
,
L. M.
,
Duffy
,
A.
,
Mc Keever
,
M.
,
Conlon
,
M.
, and
McCormack
,
S. J.
,
2011
, “
Comparative Field Performance Study of Flat Plate and Heat Pipe Evacuated Tube Collectors (ETCs) for Domestic Water Heating Systems in a Temperate Climate
,”
Energy
,
36
(
5
), pp.
3370
3378
.
35.
Hossain
,
M. S.
,
Pandey
,
A. K.
,
Selvaraj
,
J.
,
Rahim
,
N. A.
,
Islam
,
M. M.
, and
Tyagi
,
V. V.
,
2019
, “
Two Side Serpentine Flow Based Photovoltaic-Thermal-Phase Change Materials (PVT-PCM) System: Energy, Exergy and Economic Analysis
,”
Renew. Energy
,
136
, pp.
1320
1336
.
36.
Mekhilef
,
S.
,
Safari
,
A.
,
Mustaffa
,
W. E. S.
,
Saidur
,
R.
,
Omar
,
R.
, and
Younis
,
M. A. A.
,
2012
, “
Solar Energy in Malaysia: Current State and Prospects
,”
Renew. Sustain. Energy Rev.
,
16
(
1
), pp.
386
396
.
37.
Daghigh
,
R.
, and
Shafieian
,
A.
,
2016
, “
Theoretical and Experimental Analysis of Thermal Performance of a Solar Water Heating System With Evacuated Tube Heat Pipe Collector
,”
Appl. Therm. Eng.
,
103
, pp.
1219
1227
.
38.
Park
,
S. R.
,
Pandey
,
A. K.
,
Tyagi
,
V. V.
, and
Tyagi
,
S. K.
,
2014
, “
Energy and Exergy Analysis of Typical Renewable Energy Systems
,”
Renew. Sustain. Energy Rev.
,
30
, pp.
105
123
.
39.
Fudholi
,
A.
,
Zohri
,
M.
,
Jin
,
G. L.
,
Ibrahim
,
A.
,
Yen
,
C. H.
,
Othman
,
M. Y.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2018
, “
Energy and Exergy Analyses of Photovoltaic Thermal Collector With ∇-Groove
,”
Sol. Energy
,
159
, pp.
742
750
.
40.
Fellaou
,
S.
, and
Bounahmidi
,
T.
,
2018
, “
Analyzing Thermodynamic Improvement Potential of a Selected Cement Manufacturing Process: Advanced Exergy Analysis
,”
Energy
,
154
, pp.
190
200
.
41.
Van Gool
,
W.
,
1997
, “Energy Policy: Fairy Tales and Factualities,”
Innovation and Technology—Strategies and Policies
,
O. D. D.
Soares
,
A. M.
da Cruz
,
G. C.
Pereira
,
I. M.
Soares
, and
A. J.
Reis
,
Springer
, Dordrecht, pp.
93
105
.
42.
Akpinar
,
E. K.
,
2010
, “
Drying of Mint Leaves in a Solar Dryer and Under Open Sun: Modelling, Performance Analyses
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2407
2418
.
43.
Fudholi
,
A.
,
Sopian
,
K.
,
Othman
,
M. Y.
,
Ruslan
,
M. H.
, and
Bakhtyar
,
B.
,
2013
, “
Energy Analysis and Improvement Potential of Finned Double-Pass Solar Collector
,”
Energy Convers. Manage.
,
75
, pp.
234
240
.
44.
Akpinar
,
E. K.
, and
Koçyiğit
,
F.
,
2010
, “
Energy and Exergy Analysis of a New Flat-Plate Solar Air Heater Having Different Obstacles on Absorber Plates
,”
Appl. Energy
,
87
(
11
), pp.
3438
3450
.
45.
Rajoria
,
C. S.
,
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2013
, “
Exergetic and Enviroeconomic Analysis of Novel Hybrid PVT Array
,”
Sol. Energy
,
88
, pp.
110
119
.
46.
Sardarabadi
,
M.
,
Passandideh-Fard
,
M.
, and
Zeinali Heris
,
S.
,
2014
, “
Experimental Investigation of the Effects of Silica/Water Nanofluid on PV/T (Photovoltaic Thermal Units)
,”
Energy
,
66
, pp.
264
272
.
47.
Al-Waeli
,
A. H. A.
,
Chaichan
,
M. T.
,
Sopian
,
K.
,
Kazem
,
H. A.
,
Mahood
,
H. B.
, and
Khadom
,
A. A.
,
2019
, “
Modeling and Experimental Validation of a PVT System Using Nanofluid Coolant and Nano-PCM
,”
Sol. Energy
,
177
, pp.
178
191
.
48.
Al-Waeli
,
A. H. A.
,
Sopian
,
K.
,
Chaichan
,
M. T.
,
Kazem
,
H. A.
,
Ibrahim
,
A.
,
Mat
,
S.
, and
Ruslan
,
M. H.
,
2017
, “
Evaluation of the Nanofluid and Nano-PCM Based Photovoltaic Thermal (PVT) System: An Experimental Study
,”
Energy Convers. Manage.
,
151
, pp.
693
708
.
49.
Fayaz
,
H.
,
Rahim
,
N. A.
,
Hasanuzzaman
,
M.
,
Nasrin
,
R.
, and
Rivai
,
A.
,
2019
, “
Numerical and Experimental Investigation of the Effect of Operating Conditions on Performance of PVT and PVT-PCM
,”
Renew. Energy
,
143
, pp.
827
841
.
50.
Hossain
,
M. S.
,
Pandey
,
A. K.
,
Selvaraj
,
J.
,
Abd Rahim
,
N.
,
Rivai
,
A.
, and
Tyagi
,
V. V.
,
2019
, “
Thermal Performance Analysis of Parallel Serpentine Flow Based Photovoltaic/Thermal (PV/T) System Under Composite Climate of Malaysia
,”
Appl. Therm. Eng.
,
153
, pp.
861
871
.
51.
Ibrahim
,
A.
,
Fudholi
,
A.
,
Sopian
,
K.
,
Othman
,
M. Y.
, and
Ruslan
,
M. H.
,
2014
, “
Efficiencies and Improvement Potential of Building Integrated Photovoltaic Thermal (BIPVT) System
,”
Energy Convers. Manage.
,
77
, pp.
527
534
.
52.
Nahar
,
A.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2017
, “
Numerical and Experimental Investigation on the Performance of a Photovoltaic Thermal Collector With Parallel Plate Flow Channel Under Different Operating Conditions in Malaysia
,”
Sol. Energy
,
144
, pp.
517
528
.
53.
Jafarkazemi
,
F.
, and
Ahmadifard
,
E.
,
2013
, “
Energetic and Exergetic Evaluation of Flat Plate Solar Collectors
,”
Renew. Energy
,
56
, pp.
55
63
.
54.
Said
,
Z.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2016
, “
Energy and Exergy Analysis of a Flat Plate Solar Collector Using Different Sizes of Aluminium Oxide Based Nanofluid
,”
J. Cleaner Prod.
,
133
, pp.
518
530
.
55.
Said
,
Z.
,
Saidur
,
R.
,
Sabiha
,
M. A.
,
Hepbasli
,
A.
, and
Rahim
,
N. A.
,
2016
, “
Energy and Exergy Efficiency of a Flat Plate Solar Collector Using pH Treated Al2O3 Nanofluid
,”
J. Cleaner Prod.
,
112
, pp.
3915
3926
.
56.
Verma
,
S. K.
,
Tiwari
,
A. K.
, and
Chauhan
,
D. S.
,
2016
, “
Performance Augmentation in Flat Plate Solar Collector Using MgO/Water Nanofluid
,”
Energy Convers. Manage.
,
124
, pp.
607
617
.
57.
Hussein
,
O. A.
,
Habib
,
K.
,
Muhsan
,
A. S.
,
Saidur
,
R.
,
Alawi
,
O. A.
, and
Ibrahim
,
T. K.
,
2020
, “
Thermal Performance Enhancement of a Flat Plate Solar Collector Using Hybrid Nanofluid
,”
Sol. Energy
,
204
, pp.
208
222
.
58.
Chow
,
T. T.
,
Pei
,
G.
,
Fong
,
K. F.
,
Lin
,
Z.
,
Chan
,
A. L. S.
, and
Ji
,
J.
,
2009
, “
Energy and Exergy Analysis of Photovoltaic-Thermal Collector With and Without Glass Cover
,”
Appl. Energy
,
86
(
3
), pp.
310
316
.
59.
Hosseinzadeh
,
M.
,
Sardarabadi
,
M.
, and
Passandideh-Fard
,
M.
,
2018
, “
Energy and Exergy Analysis of Nanofluid Based Photovoltaic Thermal System Integrated With Phase Change Material
,”
Energy
,
147
, pp.
636
647
.
60.
Farahat
,
S.
,
Sarhaddi
,
F.
, and
Ajam
,
H.
,
2009
, “
Exergetic Optimization of Flat Plate Solar Collectors
,”
Renew. Energy
,
34
(
4
), pp.
1169
1174
.
You do not currently have access to this content.