Abstract

Flywheel Energy Storage Systems (FESS) present an environment-friendly solution for storing and utilizing solar energy; however, voltage and current frequent fluctuations in solar module photovoltaic (PV) systems limit the efficiency of the FESS bidirectional converter. The converter’s function is to regulate and maintain the harnessed solar energy input to the FESS through the converter’s duty cycle. In this paper, a method is proposed to select the duty cycle of the bidirectional converter for efficient energy storage of the solar module PV system. The solar module PV system is first modeled and then validated through field-testing to determine the theoretical and experimental maximum power point (MPP) voltage and current output. The solar photovoltaic module model has an average percent difference of 12% compared to the field-testing results. The FESS and the bidirectional converter are separately modeled and then integrated to determine the FESS power output, efficiency, and flywheel rotational speed. The resulting FESS efficiency is 80% which is 14% higher than the efficiencies of FESS for off-grid PV applications available in the literature. The developed duty cycle selection of the bidirectional converter will aid in the development of commercial FESS for off-grid systems.

References

1.
Sandali
,
M.
,
Boubekri
,
A.
, and
Mennouche
,
D.
,
2019
, “
Improvement of the Thermal Performance of Solar Drying Systems Using Different Techniques: A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
050802
.
2.
Jensen
,
J.
,
So̸rensen
,
B.
, and
Rabl
,
A.
,
1984
, “
Fundamentals of Energy Storage
,”
ASME J. Sol. Energy Eng.
,
106
(
3
), pp.
376
376
.
3.
Chen
,
H.
,
Cong
,
T. N.
,
Yang
,
W.
,
Tan
,
C.
,
Li
,
Y.
, and
Ding
,
Y.
,
2009
, “
Progress in Electrical Energy Storage System: A Critical Review
,”
Prog. Nat. Sci.
,
19
(
3
), pp.
291
312
.
4.
Cimuca
,
G. O.
,
Saudemont
,
C.
,
Robyns
,
B.
, and
Radulescu
,
M. M.
,
2006
, “
Control and Performance Evaluation of a Flywheel Energy-Storage System Associated to a Variable-Speed Wind Generator
,”
IEEE Trans. Ind. Electron.
,
53
(
4
), pp.
1074
1085
.
5.
Panwar
,
N.
,
Kaushik
,
S.
, and
Kothari
,
S.
,
2011
, “
Role of Renewable Energy Sources in Environmental Protection: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1513
1524
.
6.
Cavallo
,
A. J.
,
2001
, “
Energy Storage Technologies for Utility Scale Intermittent Renewable Energy Systems
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
387
389
.
7.
Arani
,
A. K.
,
Karami
,
H.
,
Gharehpetian
,
G.
, and
Hejazi
,
M.
,
2017
, “
Review of Flywheel Energy Storage Systems Structures and Applications in Power Systems and Microgrids
,”
Renewable Sustainable Energy Rev.
,
69
(
1
), pp.
9
18
.
8.
Li
,
X.
,
Erd
,
N.
, and
Binder
,
A.
,
2016
, “
Evaluation of Flywheel Energy Storage Systems for Residential Photovoltaic Installations
,”
2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)
,
IEEE
,
Capri, Italy
,
June 22–24
, pp.
255
260
.
9.
Hanley
,
C.
,
Peek
,
G.
,
Boyes
,
J.
,
Klise
,
G.
,
Stein
,
J.
,
Ton
,
D.
, and
Duong
,
T.
,
2009
, “
Technology Development Needs for Integrated Grid-Connected PV Systems and Electric Energy Storage
,”
Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC)
,
IEEE
,
Philadelphia, PA
,
June 7–12, 2009
, pp.
1832
1837
.
10.
Nguyen
,
X. H.
, and
Nguyen
,
M. P.
,
2015
, “
Mathematical Modeling of Photovoltaic Cell/Module/Arrays With Tags in Matlab/Simulink
,”
Environ. Syst. Res.
,
4
(
1
), pp.
23
25
.
11.
Cubas
,
J.
,
Pindado
,
S.
, and
De Manuel
,
C.
,
2014
, “
Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function
,”
Energies
,
7
(
7
), pp.
4098
4115
.
12.
Park
,
J.-Y.
, and
Choi
,
S.-J.
,
2017
, “
A Novel Simulation Model for PV Panels Based on Datasheet Parameter Tuning
,”
Sol. Energy
,
145
(
1
), pp.
90
98
.
13.
Bellia
,
H.
,
Youcef
,
R.
, and
Fatima
,
M.
,
2014
, “
A Detailed Modeling of Photovoltaic Module Using MATLAB
,”
NRIAG J. Astron. Geophys.
,
3
(
1
), pp.
53
61
.
14.
Shao
,
Q.
,
Zhao
,
Y.
,
Du
,
S.
,
Du
,
Y.
,
Lee
,
W. Y.
,
Kim
,
T. M.
,
Kim
,
M. J.
,
Ko
,
Y.
, and
Kim
,
J. D.
,
2016
, “
A Novel Hybrid Energy Storage Strategy Based on Flywheel and Lead-Acid Battery in Wind Power Generation System
,”
Int. J. Control Autom.
,
8
(
7
), pp.
1
12
.
15.
Gonçalves de Oliveira
,
J.
,
2011
, “
Power Control Systems in a Flywheel Based all-Electric Driveline
,”
Ph.D. dissertation
,
Acta Universitatis Upsaliensis
,
Sweden
.
16.
Olabi
,
A. G.
,
Wilberforce
,
T.
,
Abdelkareem
,
M. A.
, and
Ramadan
,
M.
,
2021
, “
Critical Review of Flywheel Energy Storage System
,”
Energies
,
14
(
8
), pp.
2158
2160
.
17.
MathWorks
,
I.
,
2013
,
MATLAB : SIMSCAPE Electrical Power Systems
,
The Math Works Inc.
,
Natick, MA
.
18.
Sayed
,
K.
,
Abdel-Salam
,
M.
,
Ahmed
,
A.
, and
Ahmed
,
M.
,
2012
, “
New High Voltage Gain Dual-Boost DC-DC Converter for Photovoltaic Power Systems
,”
Electr. Power Compon. Syst.
,
40
(
7
), pp.
711
728
.
19.
Xiao
,
H.
, and
Xie
,
S.
,
2012
, “
Interleaving Double-Switch Buck–Boost Converter
,”
IET Power Electron.
,
5
(
6
), pp.
899
908
.
20.
Bozorgi
,
A. M.
,
Fereshtehpoor
,
V.
,
Monfared
,
M.
, and
Namjoo
,
N.
,
2015
, “
Controller Design Using Ant Colony Algorithm for a Non-inverting Buck–Boost Chopper Based on a Detailed Average Model
,”
Electr. Power Compon. Syst.
,
43
(
2
), pp.
177
188
.
21.
Botha
,
P. J. J.
,
2017
, “
Evaluation and Improvement of the Single Diode Model's Parameters Used for Solar PV Modelling
,”
M. S. thesis
,
Stellenbosch University
,
Stellenbosch, South Africa
.
You do not currently have access to this content.