Abstract

Photovoltaic (PV) power intermittence impacts electrical grid security and operation. Precise PV power and solar irradiation forecasts have been investigated as significant reducers of such impacts. Predicting solar irradiation involves uncertainties related to the characteristics of time series and their high volatility due to the dependence on many weather conditions. We propose a systematic review of PV power and solar resource forecasting, considering technical aspects related to each applied methodology. Our review covers the performance analysis of various physical, statistical, and machine learning models. These methodologies should contribute to decision-making, being applicable to different sites and climatic conditions. About 42% of the analyzed articles developed hybrid approaches, 83% performed short-term prediction, and more than 78% had, as forecast goal, PV power, solar irradiance, and solar irradiation. Considering spatial forecast scale, 66% predicted in a single field. As a trend for the coming years, we highlight the use of hybridized methodologies, especially those that optimize input and method parameters without loss of precision and postprocessing methodologies aiming at improvements in individualized applications.

References

1.
Lima
,
M. A. F. B.
,
Carvalho
,
P. C. M.
,
Fernández-Ramírez
,
L. M.
, and
Braga
,
A. P. S.
,
2020
, “
Improving Solar Forecasting Using Deep Learning and Portfolio Theory Integration
,”
Energy
,
195
, p.
117016
.
2.
Kaur
,
A.
,
Nonnenmacher
,
L.
,
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2016
, “
Benefits of Solar Forecasting for Energy Imbalance Markets
,”
Renewable Energy
,
86
, pp.
819
830
.
3.
Wang
,
G. C.
,
Ratnam
,
E.
,
Haghi
,
H. V.
, and
Kleissl
,
J.
,
2019
, “
Corrective Receding Horizon EV Charge Scheduling Using Short-Term Solar Forecasting
,”
Renewable Energy
,
130
, pp.
1146
1158
.
4.
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2015
, “
Nearest-Neighbor Methodology for Prediction of Intra-Hour Global Horizontal and Direct Normal Irradiances
,”
Renewable Energy
,
80
, pp.
770
782
.
5.
Yang
,
D.
,
2018
, “
SolarData: An R Package for Easy Access of Publicly Available Solar Datasets
,”
Sol. Energy
,
171
, pp.
A3
A12
.
6.
Nobre
,
A. M.
,
Karthik
,
S.
,
Liu
,
H.
,
Yang
,
D.
,
Martins
,
F. R.
,
Pereira
,
E. B.
,
Rüther
,
R.
,
Reindl
,
T.
, and
Peters
,
I. M.
,
2016
, “
On the Impact of Haze on the Yield of Photovoltaic Systems in Singapore
,”
Renewable Energy
,
89
, pp.
389
400
.
7.
Yang
,
D.
,
Walsh
,
W. M.
, and
Jirutitijaroen
,
P.
,
2014
, “
Estimation and Applications of Clear Sky Global Horizontal Irradiance at the Equator
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
034505
.
8.
Yang
,
D.
, and
Gueymard
,
C. A.
,
2019
, “
Producing High-Quality Solar Resource Maps by Integrating High- and Low Accuracy Measurements Using Gaussian Processes
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109260
.
9.
Yang
,
D.
,
2019
, “
Standard of Reference in Operational Day-Ahead Deterministic Solar Forecasting
,”
J. Renewable Sustainable Energy
,
11
(
5
), p.
053702
.
10.
Antonanzas
,
J.
,
Osorio
,
N.
,
Escobar
,
R.
,
Urraca
,
R.
,
Martinez-de-Pison
,
F. J.
, and
Antonanzas-Torres
,
F.
,
2016
, “
Review of Photovoltaic Power Forecasting
,”
Sol. Energy
,
136
, pp.
78
111
.
11.
Liu
,
D.
, and
Sun
,
K.
,
2019
, “
Random Forest Solar Power Forecast Based on Classification Optimization
,”
Energy
,
187
, p.
115940
.
12.
Mathiesen
,
P.
, and
Kleissl
,
J.
,
2011
, “
Evaluation of Numerical Weather Prediction for Intra-Day Solar Forecasting in the Continental United States
,”
Sol. Energy
,
85
(
5
), pp.
967
977
.
13.
Peruchena
,
C. M. F.
,
Gastón
,
M.
,
Schroedter-Homscheidt
,
M.
,
Kosmale
,
M.
,
Marco
,
I. M.
,
García-Moya
,
J. A.
, and
Casado-Rubio
,
J. L.
,
2017
, “
Dynamic Paths: Towards High Frequency Direct Normal Irradiance Forecasts
,”
Energy
,
132
, pp.
315
323
.
14.
Bacher
,
P.
,
Madsen
,
H.
, and
Nielsen
,
H. A.
,
2009
, “
Online Short-Term Solar Power Forecasting
,”
Sol. Energy
,
83
(
10
), pp.
1772
1783
.
15.
Huang
,
R.
,
Huang
,
T.
,
Gadh
,
R.
, and
Li
,
N.
,
2012
, “
Solar Generation Prediction Using the ARMA Model in a Laboratory-Level Micro-Grid
,”
IEEE Third International Conference on Smart Grid Communications
,
Tainan, Taiwan
,
Nov. 5–8
, pp.
528
533
.
16.
Wu
,
J.
, and
Chan
,
C. K.
,
2012
, “
The Prediction of Monthly Average Solar Radiation With TDNN and ARIMA
,”
11th International Conference on Machine Learning and Applications
,
Boca Raton, FL
,
Dec. 12–15
, pp.
469
474
.
17.
Jallal M.
,
A.
,
Yassini A.
,
E.
,
Chabaa
,
S.
,
Zeroual
,
A.
, and
Ibnyaich
,
S.
,
2020
, “
AI Data Driven Approach-Based Endogenous Inputs for Global Solar Radiation Forecasting
,”
Ingénierie des Systèmes d'Information
,
25
(
1
), pp.
27
34
.
18.
Hu
,
K.
,
Cao
,
S.
,
Wang
,
L.
,
Li
,
W.
, and
Lv
,
M.
,
2018
, “
A New Ultra-Short-Term Photovoltaic Power Prediction Model Based on Ground-Based Cloud Images
,”
J. Cleaner Prod.
,
200
, pp.
731
745
.
19.
Jiang
,
H.
,
Dong
,
Y.
,
Wang
,
J.
, and
Li
,
Y.
,
2015
, “
Intelligent Optimization Models Based on Hard-Ridge Penalty and RBF for Forecasting Global Solar Radiation
,”
Energy Convers. Manage.
,
95
, pp.
42
58
.
20.
Jung
,
Y.
,
Jung
,
J.
,
Kim
,
B.
, and
Han
,
S.
,
2020
, “
Long Short-Term Memory Recurrent Neural Network for Modeling Temporal Patterns in Long-Term Power Forecasting for Solar PV Facilities: Case Study of South Korea
,”
J. Clean. Prod.
,
250
, p.
119476
.
21.
Gao
,
M.
,
Li
,
J.
,
Hong
,
F.
, and
Long
,
D.
,
2019
, “
Day-Ahead Power Forecasting in a Large-Scale Photovoltaic Plant Based on Weather Classification Using LSTM
,”
Energy
,
187
, p.
115838
.
22.
Qing
,
X.
, and
Niu
,
Y.
,
2018
, “
Hourly Day-Ahead Solar Irradiance Prediction Using Weather Forecasts by LSTM
,”
Energy
,
148
, pp.
461
468
.
23.
Wang
,
K.
,
Qi
,
X.
, and
Liu
,
H.
,
2019
, “
Photovoltaic Power Forecasting-Based LSTM-Convolutional Network
,”
Energy
,
189
, p.
116225
.
24.
Wang
,
K.
,
Qi
,
X.
, and
Liu
,
H.
,
2019
, “
A Comparison of Day-Ahead Photovoltaic Power Forecasting Models Based on Deep Learning Neural Network
,”
Appl. Energy
,
251
, p.
113315
.
25.
Das U.
,
K.
,
Tey
,
K. S.
,
Seyedmahmoudian
,
M.
,
Mekhilef
,
S.
,
Idris
,
M. Y. I.
,
Deventer
,
W. V.
,
Horan
,
B.
, and
Stojcevski
,
A.
,
2018
, “
Forecasting of Photovoltaic Power Generation and Model Optimization: A Review
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
912
928
.
26.
Kitchenham
,
B.
, and
Charters
,
S.
,
2007
,
Guidelines for Performing Systematic Literature Reviews in Software Engineering
,
Department of Computer Science, University of Durham
,
Durham, UK
, Technical Report EBSE-2007-01.
27.
Santos
,
I. S.
,
Andrade
,
R. M. d. C.
,
Rocha
,
L. S.
,
Matalonga
,
S.
,
Oliveira
,
K. M.
, and
Travassos
,
G. H.
,
2017
, “
Test Case Design for Context-Aware Applications: Are We There yet?
,”
Inf. Softw. Technol.
,
88
, pp.
1
16
.
28.
MertYagli
,
G.
,
Yang
,
D.
, and
Srinivasan
,
D.
,
2019
, “
Automatic Hourly Solar Forecasting Using Machine Learning Models
,”
Renewable Sustainable Energy Rev.
,
105
, pp.
487
498
.
29.
Chu
,
Y.
, and
Coimbra
,
C. F. M.
,
2017
, “
Short-Term Probabilistic Forecasts for Direct Normal Irradiance
,”
Renewable Energy
,
101
, pp.
526
536
.
30.
Yang
,
D.
,
2019
, “
Making Reference Solar Forecasts With Climatology, Persistence, and Their Optimal Convex Combination
,”
Sol. Energy
,
193
, pp.
981
985
.
31.
Boilley
,
A.
,
Thomas
,
C.
,
Marchand
,
M.
,
Wey
,
E.
, and
Blanc
,
P.
,
2016
, “
The Solar Forecast Similarity Method: a new Method to Compute Solar Radiation Forecasts for the Next day
,”
Energy Procedia
,
91
, pp.
1018
1023
.
32.
Voyant
,
C.
,
Notton
,
G.
,
Darras
,
C.
,
Fouilloy
,
A.
, and
Motte
,
F.
,
2017
, “
Uncertainties in Global Radiation Time Series Forecasting Using Machine Learning: The Multilayer Perceptron Case
,”
Energy
,
125
, pp.
248
257
.
33.
Fouilloy
,
A.
,
Voyant
,
C.
,
Notton
,
G.
,
Motte
,
F.
,
Paoli
,
C.
,
Nivet
,
M.
,
Guillot
,
E.
, and
Duchaud
,
J.
,
2018
, “
Solar Irradiation Prediction With Machine Learning: Forecasting Models Selection Method Depending on Weather Variability
,”
Energy
,
165
, pp.
620
629
.
34.
Benali
,
L.
,
Notton
,
G.
,
Fouilloy
,
A.
,
Voyant
,
C.
, and
Dizene
,
R.
,
2019
, “
Solar Radiation Forecasting Using Artificial Neural Network and Random Forest Methods: Application to Normal Beam, Horizontal Diffuse and Global Components
,”
Renewable Energy
,
132
, pp.
871
884
.
35.
Li
,
J.
,
Ward
,
J. K.
,
Tong
,
J.
,
Collins
,
L.
, and
Platt
,
G.
,
2016
, “
Machine Learning for Solar Irradiance Forecasting of Photovoltaic System
,”
Renewable Energy
,
90
, pp.
542
553
.
36.
Aguiar
,
L. M.
,
Pereira
,
B.
,
Lauret
,
P.
,
Díaz
,
F.
, and
David
,
M.
,
2016
, “
Combining Solar Irradiance Measurements, Satellite-Derived Data, and a Numerical Weather Prediction Model to Improve Intra-Day Solar Forecasting
,”
Renewable Energy
,
97
, pp.
599
610
.
37.
Pedro
,
H. T. C.
,
Coimbra
,
C. F. M.
,
David
,
M.
, and
Lauret
,
P.
,
2018
, “
Assessment of Machine Learning Techniques for Deterministic and Probabilistic Intra-Hour Solar Forecasts
,”
Renewable Energy
,
123
, pp.
191
203
.
38.
McCandless
,
T. C.
,
Haupt
,
S. E.
, and
Young
,
G. S.
,
2016
, “
A Regime-Dependent Artificial Neural Network Technique for Short-Range Solar Irradiance Forecasting
,”
Renewable Energy
,
89
, pp.
351
359
.
39.
Lan
,
H.
,
Yin
,
H.
,
Hong
,
Y.
,
Wen
,
S.
,
Yu
,
D. C.
, and
Cheng
,
P.
,
2018
, “
Day-Ahead Spatio-Temporal Forecasting of Solar Irradiation Along a Navigation Route
,”
Appl. Energy
,
211
, pp.
15
27
.
40.
Ghimire
,
S.
,
Deo
,
R. C.
,
Raj
,
N.
, and
Mi
,
J.
,
2019
, “
Deep Solar Radiation Forecasting With Convolutional Neural Network and Long Short-Term Memory Network Algorithms
,”
Appl. Energy
,
253
, p.
113541
.
41.
Rahmann
,
C.
,
Mayol
,
C.
, and
Haas
,
J.
,
2018
, “
Dynamic Control Strategy in Partially-Shaded Photovoltaic Power Plants for Improving the Frequency of the Electricity System
,”
J. Cleaner Prod.
,
202
, pp.
109
119
.
42.
MertYagli
,
G.
,
Yang
,
D.
,
Gandhi
,
O.
, and
Srinivasan
,
D.
,
2020
, “
Can We Justify Producing Univariate Machine-Learning Forecasts With Satellite-Derived Solar Irradiance?
,”
Appl. Energy
,
259
, p.
114122
.
43.
Zhu
,
T.
,
Wei
,
H.
,
Zhao
,
X.
,
Zhang
,
C.
, and
Zhang
,
K.
,
2017
, “
Clear-Sky Model for Wavelet Forecast of Direct Normal Irradiance
,”
Renewable Energy
,
104
, pp.
1
8
.
44.
Liu
,
Y.
,
Qin
,
H.
,
Zhang
,
Z.
,
Pei
,
S.
,
Wang
,
C.
,
Yu
,
X.
,
Jiang
,
Z.
, and
Zhou
,
J.
,
2019
, “
Ensemble Spatiotemporal Forecasting of Solar Irradiation Using Variational Bayesian Convolutional Gate Recurrent Unit Network
,”
Appl. Energy
,
253
, p.
113596
.
45.
Heo
,
J.
,
Jung
,
J.
,
Kim
,
B.
, and
Han
,
S.
,
2020
, “
Digital Elevation Model-Based Convolutional Neural Network Modeling for Searching of High Solar Energy Regions
,”
Appl. Energy
,
262
, p.
114588
.
46.
Nirudh
,
J.
, and
Somchat
,
J.
,
2019
, “
Estimation of Solar Potential for Thailand Using Adaptive Neurofuzzy Inference System Models
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061009
.
47.
Wen
,
H.
,
Du
,
Y.
,
Chen
,
X.
,
Lim
,
E.
,
Wen
,
H.
,
Jiang
,
L.
, and
Xiang
,
W.
,
2021
, “
Deep Learning Based Multistep Solar Forecasting for PV Ramp-Rate Control Using Sky Images
,”
IEEE Trans. Ind. Electron.
,
17
(
2
), pp.
1397
1406
.
48.
Kamadinata
,
J. O.
,
Ken
,
T. L.
, and
Suwa
,
T.
,
2020
, “
Solar Irradiance Fluctuation Prediction Methodology Using Artificial Neural Networks
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031003
.
49.
Prado-Rujas
,
I.
,
García-Dopico
,
A.
,
Serrano
,
E.
, and
Pérez
,
M. S.
,
2021
, “
A Flexible and Robust Deep Learning-Based System for Solar Irradiance Forecasting
,”
IEEE Access
,
9
, pp.
12348
12361
.
50.
Vaz
,
A. G. R.
,
Elsinga
,
B.
,
van Sark
,
W. G. J. H. M.
, and
Brito
,
M. C.
,
2016
, “
An Artificial Neural Network to Assess the Impact of Neighboring Photovoltaic Systems in Power Forecasting in Utrecht, the Netherlands
,”
Renewable Energy
,
85
, pp.
631
641
.
51.
Cervone
,
G.
,
Clemente-Harding
,
L.
,
Alessandrini
,
L.
, and
Monache
,
L. D.
,
2017
, “
Short-Term Photovoltaic Power Forecasting Using Artificial Neural Networks and an Analog Ensemble
,”
Renewable Energy
,
108
, pp.
274
286
.
52.
Hossain
,
M.
,
Mekhilef
,
S.
,
Danesh
,
M.
,
Olatomiwa
,
L.
, and
Shamshirband
,
S.
,
2017
, “
Application of Extreme Learning Machine for Short Term Output Power Forecasting of Three Grid-Connected PV Systems
,”
J. Cleaner Prod.
,
167
, pp.
395
405
.
53.
Han
,
Y.
,
Wang
,
N.
,
Ma
,
M.
,
Zhou
,
H.
,
Dai
,
S.
, and
Zhu
,
H.
,
2019
, “
A PV Power Interval Forecasting Based on Seasonal Model and Nonparametric Estimation Algorithm
,”
Sol. Energy
,
184
, pp.
515
526
.
54.
Alfulayyih
,
Y. M.
,
Li
,
P.
, and
Gwesha
,
A. O.
,
2019
, “
A Generic Algorithm for Planning the Year-Round Solar Energy Harvest/Storage to Supply Solar-Based Stable Power
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
041002
.
55.
Ameen
,
A. M.
,
Pasupuleti
,
J.
,
Khatib
,
T.
,
Elmenreich
,
W.
, and
Kazem
,
H. A.
,
2015
, “
Modeling and Characterization of a Photovoltaic Array Based on Actual Performance Using Cascade-Forward Back Propagation Artificial Neural Network
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041010
.
56.
Sridharan
,
M.
,
Jayaprakash
,
G.
,
Chandrasekar
,
M.
,
Vigneshwar
,
P.
,
Paramaguru
,
S.
, and
Amarnath
,
K.
,
2018
, “
Prediction of Solar Photovoltaic/Thermal Collector Power Output Using Fuzzy Logic
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061013
.
57.
Yang
,
D.
,
2019
, “
On Post-Processing Day-Ahead NWP Forecasts Using Kalman Filtering
,”
Sol. Energy
,
182
, pp.
179
181
.
58.
Aryaputera
,
A. W.
,
Yang
,
D.
, and
Walsh
,
W. M.
,
2015
, “
Day-Ahead Solar Irradiance Forecasting in a Tropical Environment
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051009
.
59.
Kurtz
,
B.
,
Mejia
,
F.
, and
Kleissl
,
J.
,
2017
, “
A Virtual Sky Imager Testbed for Solar Energy Forecasting
,”
Sol. Energy
,
158
, pp.
753
759
.
60.
Chow
,
C. W.
,
Belongie
,
S.
, and
Kleissl
,
J.
,
2015
, “
Cloud Motion and Stability Estimation for Intra-Hour Solar Forecasting
,”
Sol. Energy
,
115
, pp.
645
655
.
61.
Sahu
,
D. K.
,
Yang
,
H.
, and
Kleissl
,
J.
,
2018
, “
Assimilating Observations to Simulate Marine Layer Stratocumulus for Solar Forecasting
,”
Sol. Energy
,
162
, pp.
454
471
.
62.
Wu
,
E.
,
Clemesha
,
R. E. S.
, and
Kleissl
,
J.
,
2018
, “
Coastal Stratocumulus Cloud Edge Forecasts
,”
Sol. Energy
,
164
, pp.
355
369
.
63.
Yang
,
H.
, and
Kleissl
,
J.
,
2016
, “
Preprocessing WRF Initial Conditions for Coastal Stratocumulus Forecasting
,”
Sol. Energy
,
133
, pp.
180
193
.
64.
Lauret
,
P.
,
Perez
,
R.
,
Aguiar
,
L. M.
,
Tapachès
,
E.
,
Diagne
,
H. M.
, and
David
,
M.
,
2016
, “
Characterization of the Intraday Variability Regime of Solar Irradiation of Climatically Distinct Locations
,”
Sol. Energy
,
125
, pp.
99
110
.
65.
Wang
,
Y.
, and
Wu
,
L.
,
2016
, “
On Practical Challenges of Decomposition-Based Hybrid Forecasting Algorithms for Wind Speed and Solar Irradiation
,”
Energy
,
112
, pp.
208
220
.
66.
Cheng
,
H.
,
2017
, “
Cloud Tracking Using Clusters of Feature Points for Accurate Solar Irradiance Nowcasting
,”
Renewable Energy
,
104
, pp.
281
289
.
67.
Miller
,
S. D.
,
Rogers
,
M. A.
,
Haynes
,
J. M.
,
Sengupta
,
M.
, and
Heidinger
,
A. K.
,
2018
, “
Short-Term Solar Irradiance Forecasting via Satellite/Model Coupling
,”
Sol. Energy
,
168
, pp.
102
117
.
68.
García-Hinde
,
O.
,
Terrén-Serrano
,
G.
,
Hombrados-Herrera
,
,
Gómez-Verdejo
,
V.
,
Jiménez-Fernández
,
S.
,
Casanova-Mateo
,
C.
,
Sanz-Justo
,
J.
,
Martínez-Ramón
,
M.
, and
Salcedo-Sanz
,
S.
,
2018
, “
Evaluation of Dimensionality Reduction Methods Applied to Numerical Weather Models for Solar Radiation Forecasting
,”
Eng. Appl. Artif. Intell.
,
69
, pp.
157
167
.
69.
Huva
,
R.
,
Verbois
,
H.
, and
Walsh
,
W.
,
2020
, “
Comparisons of Next-Day Solar Forecasting for Singapore Using 3DVAR and 4DVAR Data Assimilation Approaches With the WRF Model
,”
Renewable Energy
,
147
, pp.
663
671
.
70.
Nonnenmacher
,
L.
,
Kaur
,
A.
, and
Coimbra
,
C. F. M.
,
2016
, “
Day-Ahead Resource Forecasting for Concentrated Solar Power Integration
,”
Renewable Energy
,
86
, pp.
866
876
.
71.
Murata
,
A.
,
Ohtake
,
H.
, and
Oozeki
,
T.
,
2018
, “
Modeling of Uncertainty of Solar Irradiance Forecasts on Numerical Weather Predictions With the Estimation of Multiple Confidence Intervals
,”
Renewable Energy
,
117
, pp.
193
201
.
72.
Akarslan
,
E.
, and
Hocaoglu
,
F. O.
,
2017
, “
A Novel Method Based on Similarity for Hourly Solar Irradiance Forecasting
,”
Renewable Energy
,
112
, pp.
337
346
.
73.
Fen
,
L.
,
Quanquan
,
Y.
,
Shanxu
,
D.
,
Jinbin
,
Z.
,
Nianjun
,
M.
, and
Zhenghong
,
C.
,
2015
, “
A Novel Model for Daily Energy Production Estimation of Grid-Connected Photovoltaic System
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031013
.
74.
Inage
,
S.
,
2017
, “
Development of an Advection Model for Solar Forecasting Based on Ground Data First Report: Development and Verification of a Fundamental Model
,”
Sol. Energy
,
153
, pp.
414
434
.
75.
Larson
,
D. P.
,
Nonnenmacher
,
L.
, and
Coimbra
,
C. F. M.
,
2016
, “
Day-Ahead Forecasting of Solar Power Output From Photovoltaic Plants in the American Southwest
,”
Renewable Energy
,
91
, pp.
11
20
.
76.
Pedro
,
H. T. C.
,
Lim
,
E.
, and
Coimbra
,
C. F. M.
,
2018
, “
A Database Infrastructure to Implement Real-Time Solar and Wind Power Generation Intra-Hour Forecasts
,”
Renewable Energy
,
123
, pp.
513
525
.
77.
Yang
,
D.
,
2019
, “
A Universal Benchmarking Method for Probabilistic Solar Irradiance Forecasting
,”
Sol. Energy
,
184
, pp.
410
416
.
78.
Aryaputera
,
A. W.
,
Yang
,
D.
,
Zhao
,
L.
, and
Walsh
,
W. M.
,
2015
, “
Very Short-Term Irradiance Forecasting at Unobserved Locations Using Spatiotemporal Kriging
,”
Sol. Energy
,
122
, pp.
1266
1278
.
79.
Yang
,
D.
,
Ye
,
Z.
,
Lim
,
L. H. I.
, and
Zibo
,
D.
,
2015
, “
Very Short-Term Irradiance Forecasting Using the Lasso
,”
Sol. Energy
,
114
, pp.
314
326
.
80.
Yang
,
D.
,
2020
, “
Ensemble Model Output Statistics as a Probabilistic Site-Adaptation Tool for Satellite Derived and Reanalysis Solar Irradiance
,”
J. Renewable Sustainable Energy
,
12
(
1
), p.
016102
.
81.
Reikard
,
G.
,
Haupt
,
S. E.
, and
Jensen
,
T.
,
2017
, “
Forecasting Ground-Level Irradiance Over Short Horizons: Time Series, Meteorological, and Time-Varying Parameter Models
,”
Renewable Energy
,
112
, pp.
474
485
.
82.
Voyant
,
C.
,
Motte
,
F.
,
Fouilloy
,
A.
,
Notton
,
G.
,
Paoli
,
C.
, and
Nivet
,
M.
,
2017
, “
Forecasting Method for Global Radiation Time Series Without Training Phase: Comparison With Other Well-Known Prediction Methodologies
,”
Energy
,
120
, pp.
199
208
.
83.
Reikard
,
G.
, and
Hansen
,
C.
,
2019
, “
Forecasting Solar Irradiance at Short Horizons: Frequency and Time Domain Models
,”
Renewable Energy
,
135
, pp.
1270
1290
.
84.
Akarslan
,
E.
,
Hocaoglu
,
F. O.
, and
Edizkan
,
R.
,
2018
, “
Novel Short Term Solar Irradiance Forecasting Models
,”
Renewable Energy
,
123
, pp.
58
66
.
85.
Dong
,
J.
,
Olama
,
M. M.
,
Kuruganti
,
T.
,
Melin
,
A. M.
,
Djouadi
,
S. M.
,
Zhang
,
Y.
, and
Xue
,
Y.
,
2020
, “
Novel Stochastic Methods to Predict Short-Term Solar Radiation and Photovoltaic Power+
,”
Renewable Energy
,
145
, pp.
333
346
.
86.
Fatemi
,
S. A.
,
Kuh
,
A.
, and
Fripp
,
M.
,
2018
, “
Parametric Methods for Probabilistic Forecasting of Solar Irradiance
,”
Renewable Energy
,
129
, pp.
666
676
.
87.
e Silva
,
R. A.
, and
Brito
,
M. C.
,
2019
, “
Spatiotemporal PV Forecasting Sensitivity to Modules’ Tilt and Orientation
,”
Appl. Energy
,
255
, p.
113807
.
88.
Bin Shams
,
M.
,
Haji
,
S.
,
Salman
,
A.
,
Abdali
,
H.
, and
Alsaffar
,
A.
,
2016
, “
Time Series Analysis of Bahrain's First Hybrid Renewable Energy System
,”
Energy
,
103
, pp.
1
15
.
89.
Giammanco
,
C.
,
Pierro
,
M.
,
Cornaro
,
C.
, and
di Carlo
,
A.
,
2016
, “
Statistic Determination of Storage Capacity for Photovoltaic Energy Imbalance Mitigation
,”
ASME J. Sol. Energy Eng.
,
138
(
1
), p.
011002
.
90.
Zheng
,
L.
,
Liu
,
Z.
,
Shen
,
J.
, and
Wu
,
C.
,
2018
, “
Very Short-Term Maximum Lyapunov Exponent Forecasting Tool for Distributed Photovoltaic Output
,”
Appl. Energy
,
229
, pp.
1128
1139
.
91.
Paulescu
,
M.
,
Brabec
,
M.
,
Boata
,
R.
, and
Badescu
,
V.
,
2017
, “
Structured, Physically Inspired (Gray Box) Models Versus Black Box Modeling for Forecasting the Output Power of Photovoltaic Plants
,”
Energy
,
121
, pp.
792
802
.
92.
van der Meer
,
D. W.
,
Shepero
,
M.
,
Svensson
,
A.
,
Widén
,
J.
, and
Munkhammar
,
J. W. J.
,
2018
, “
Probabilistic Forecasting of Electricity Consumption, Photovoltaic Power Generation and Net Demand of an Individual Building Using Gaussian Processes
,”
Appl. Energy
,
213
, pp.
195
207
.
93.
Ni
,
Q.
,
Zhuang
,
S.
,
Sheng
,
H.
,
Kang
,
G.
, and
Xiao
,
J.
,
2017
, “
An Ensemble Prediction Intervals Approach for Short-Term PV Power Forecasting
,”
Sol. Energy
,
155
, pp.
1072
1083
.
94.
Yang
,
D.
,
Wu
,
E.
, and
Kleissl
,
J.
,
2019
, “
Operational Solar Forecasting for the Real-Time Market
,”
Int. J. Forecast.
,
35
(
4
), pp.
1499
1519
.
95.
de la Rosa
,
E. O.
,
Nuñez
,
G. B.
,
Roca
,
A. O. P.
, and
Ledesma-Alonso
,
R.
,
2019
, “
An Empiric-Stochastic Approach, Based on Normalization Parameters, to Simulate Solar Irradiance
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061011
.
96.
Li
,
P.
,
Bessafi
,
M.
,
Morel
,
B.
,
Chabriat
,
J.
,
Delsaut
,
M.
, and
Li
,
Q.
,
2020
, “
Daily Surface Solar Radiation Prediction Mapping Using Artificial Neural Network: The Case Study of Reunion Island
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021009
.
97.
Raghavan
,
V. S. G.
, and
Gopalan
,
H.
,
2018
, “
URB-Solar: An Open-Source Tool for Solar Power Prediction in Urban Areas
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
064501
.
98.
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2015
, “
Short-Term Irradiance Forecastability for Various Solar Micro-Climates
,”
Sol. Energy
,
122
, pp.
587
602
.
99.
Zagouras
,
A.
,
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2015
, “
On the Role of Lagged Exogenous Variables and Spatiotemporal Correlations in Improving the Accuracy of Solar Forecasting Methods
,”
Renewable Energy
,
78
, pp.
203
218
.
100.
Dong
,
Z.
,
Yang
,
D.
,
Reindl
,
T.
, and
Walsh
,
W. M.
,
2015
, “
A Novel Hybrid Approach Based on Self-Organizing Maps, Support Vector Regression and Particle Swarm Optimization to Forecast Solar Irradiance
,”
Energy
,
82
, pp.
570
577
.
101.
Wang
,
G. C.
,
Urquhart
,
B.
, and
Kleissl
,
J.
,
2019
, “
Cloud Base Height Estimates From Sky Imagery and a Network of Pyranometers
,”
Sol. Energy
,
184
, pp.
594
609
.
102.
Yang
,
D.
,
Sharma
,
V.
,
Ye
,
Z.
,
Lim
,
L. I.
,
Zhao
,
L.
, and
Aryaputera
,
A. W.
,
2015
, “
Forecasting of Global Horizontal Irradiance by Exponential Smoothing, Using Decompositions
,”
Energy
,
81
, pp.
111
119
.
103.
Verbois
,
H.
,
Huva
,
R.
,
Rusydi
,
A.
, and
Walsh
,
W.
,
2018
, “
Solar Irradiance Forecasting in the Tropics Using Numerical Weather Prediction and Statistical Learning
,”
Sol. Energy
,
162
, pp.
265
277
.
104.
Prasad
,
R.
,
Ali
,
M.
,
Xiang
,
Y.
, and
Khan
,
H.
,
2020
, “
A Double Decomposition-Based Modelling Approach to Forecast Weekly Solar Radiation
,”
Renewable Energy
,
152
, pp.
9
22
.
105.
Aguiar
,
L. M.
,
Polo
,
J.
,
Vindel
,
J. M.
, and
Oliver
,
A.
,
2019
, “
Analysis of Satellite Derived Solar Irradiance in Islands With Site Adaptation Techniques for Improving the Uncertainty
,”
Renewable Energy
,
135
, pp.
98
107
.
106.
Hocaoglu
,
F. O.
, and
Serttas
,
F.
,
2017
, “
A Novel Hybrid (Mycielski-Markov) Model for Hourly Solar Radiation Forecasting
,”
Renewable Energy
,
108
, pp.
635
643
.
107.
Nam
,
S.
, and
Hur
,
J.
,
2019
, “
A Hybrid Spatiotemporal Forecasting of Solar Generating Resources for Grid Integration
,”
Energy
,
177
, pp.
503
510
.
108.
Prasad
,
R.
,
Ali
,
M.
,
Kwan
,
P.
, and
Khan
,
H.
,
2019
, “
Designing a Multi-Stage Multivariate Empirical Mode Decomposition Coupled With Ant Colony Optimization and Random Forest Model to Forecast Monthly Solar Radiation
,”
Appl. Energy
,
236
, pp.
778
792
.
109.
Bouzgou
,
H.
, and
Gueymard
,
C. A.
,
2019
, “
Fast Short-Term Global Solar Irradiance Forecasting With Wrapper Mutual Information
,”
Renewable Energy
,
133
, pp.
1055
1065
.
110.
Monjoly
,
S.
,
André
,
M.
,
Calif
,
R.
, and
Soubdhan
,
T.
,
2017
, “
Hourly Forecasting of Global Solar Radiation Based on Multiscale Decomposition Methods: A Hybrid Approach
,”
Energy
,
119
, pp.
288
298
.
111.
Alonso-Montesinos
,
J.
,
Monterreal
,
R.
,
Fernandez-Reche
,
J.
,
Ballestrín
,
J.
,
Carra
,
E.
,
Polo
,
J.
,
Barbero
,
J.
,
Batlles
,
F. J.
,
Lopez
,
G.
,
Enrique
,
R.
,
Martínez-Durban
,
M.
, and
Marzo
,
A.
,
2019
, “
Intra-Hour Energy Potential Forecasting in a Central Solar Power Plant Receiver Combining Meteosat Images and Atmospheric Extinction
,”
Energy
,
188
, p.
116034
.
112.
Guermoui
,
M.
,
Melgani
,
F.
, and
Danilo
,
C.
,
2018
, “
Multi-Step Ahead Forecasting of Daily Global and Direct Solar Radiation: A Review and Case Study of Ghardaia Region
,”
J. Cleaner Prod.
,
201
, pp.
716
734
.
113.
Maleki
,
A.
,
Khajeh
,
M. G.
, and
Rosen
,
M. A.
,
2016
, “
Weather Forecasting for Optimization of a Hybrid Solar-Wind-Powered Reverse Osmosis Water Desalination System Using a Novel Optimizer Approach
,”
Energy
,
114
, pp.
1120
1134
.
114.
Hong
,
Y.
,
Martinez
,
J. J. F.
, and
Fajardo
,
A. C.
,
2020
, “
Day-Ahead Solar Irradiation Forecasting Utilizing Gramian Angular Field and Convolutional Long Short-Term Memory
,”
IEEE Acess
,
8
, pp.
18741
18753
.
115.
Raffán
,
L. C. P.
,
Romero
,
A.
, and
Martinez
,
M.
,
2018
, “
Solar Energy Production Forecasting Through Artificial Neuronal Networks, Considering the Föhn, North and South Winds in San Juan, Argentina
,”
The 7th International Conference on Renewable Power Generation
,
Lyngby, Copenhagen, Denmark
,
Sept. 26–27
.
116.
Boland
,
J.
,
David
,
M.
, and
Lauret
,
P.
,
2016
, “
Short Term Solar Radiation Forecasting: Island Versus Continental Sites
,”
Energy
,
113
, pp.
186
192
.
117.
Alonso-Montesinos
,
J.
,
Polo
,
J.
,
Ballestrín
,
J.
,
Batlles
,
F. J.
, and
Portillo
,
C.
,
2019
, “
Impact of DNI Forecasting on CSP Tower Plant Power Production
,”
Renewable Energy
,
138
, pp.
368
377
.
118.
Trapero
,
J. R.
,
2016
, “
Calculation of Solar Irradiation Prediction Intervals Combining Volatility and Kernel Density Estimates
,”
Energy
,
114
, pp.
266
274
.
119.
Ozoegwu
,
C. G.
,
2019
, “
Artificial Neural Network Forecast of Monthly Mean Daily Global Solar Radiation of Selected Locations Based on Time Series and Month Number
,”
J. Cleaner Prod.
,
216
, pp.
1
13
.
120.
Heydari
,
A.
,
Garcia
,
D. A.
,
Keynia
,
F.
,
Bisegna
,
F.
, and
Santoli
,
L.
,
2019
, “
A Novel Composite Neural Network-Based Method for Wind and Solar Power Forecasting in Microgrids
,”
Appl. Energy
,
251
, p.
113353
.
121.
Lan
,
H.
,
Zhang
,
C.
,
Hong
,
Y.
,
He
,
Y.
, and
Wen
,
S.
,
2019
, “
Day-Ahead Spatiotemporal Solar Irradiation Forecasting Using Frequency-Based Hybrid Principal Component Analysis and Neural Network
,”
Appl. Energy
,
247
, pp.
389
402
.
122.
del Campo-Avila
,
J.
,
Piliougine
,
M.
,
Morales-Bueno
,
R.
, and
Mora-Lopez
,
L.
,
2019
, “
A Data Mining System for Predicting Solar Global Spectral Irradiance. Performance Assessment in the Spectral Response Ranges of Thin-Film Photovoltaic Modules
,”
Renewable Energy
,
133
, pp.
828
839
.
123.
Cheng
,
H.
,
2016
, “
Hybrid Solar Irradiance Now-Casting by Fusing Kalman Filter and Regressor
,”
Renewable Energy
,
91
, pp.
434
441
.
124.
Lima
,
F. J. L.
,
Martins
,
F. R.
,
Pereira
,
E. B.
,
Lorenz
,
E.
, and
Heinemann
,
D.
,
2016
, “
Forecast for Surface Solar Irradiance at the Brazilian Northeastern Region Using NWP Model and Artificial Neural Networks
,”
Renewable Energy
,
87
, pp.
807
818
.
125.
Guermoui
,
M.
,
Gairaa
,
K.
,
Boland
,
J.
, and
Arrif
,
T.
,
2020
, “
A Novel Hybrid Model for Solar Radiation Forecasting Using Support Vector Machine and Bee Colony Optimization Algorithm: Review and Case Study
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
020801
.
126.
Hussain
,
S.
, and
AlAlili
,
A.
,
2016
, “
Online Sequential Learning of Neural Networks in Solar Radiation Modeling Using Hybrid Bayesian Hierarchical Approach
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061012
.
127.
Cornaro
,
C.
,
Bucci
,
F.
,
Pierro
,
M.
,
Del Frate
,
F.
,
Peronaci
,
S.
, and
Taravat
,
A.
,
2015
, “
Twenty-Four Hour Solar Irradiance Forecast Based on Neural Networks and Numerical Weather Prediction
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031011
.
128.
Abdel-Nasser
,
M.
,
Mahmoud
,
K.
, and
Lehtonen
,
M.
,
2021
, “
Reliable Solar Irradiance Forecasting Approach Based on Choquet Integral and Deep LSTMs
,”
IEEE Trans. Ind. Electron.
,
17
(
3
), pp.
1873
1881
.
129.
Chu
,
Y.
,
Urquhart
,
B.
,
Gohari
,
S. M. I.
,
Pedro
,
H. T. C.
,
Kleissl
,
J.
, and
Coimbra
,
C. F. M.
,
2015
, “
Short-Term Reforecasting of Power Output From a 48 MWe Solar PV Plant
,”
Sol. Energy
,
112
, pp.
68
77
.
130.
Doubleday
,
K.
,
Jascourt
,
S.
,
Kleiber
,
W.
, and
Hodge
,
B.
,
2021
, “
Probabilistic Solar Power Forecasting Using Bayesian Model Averaging
,”
IEEE Trans. Sustainable Energy
,
12
(
1
), pp.
325
337
.
131.
Pierro
,
M.
,
Bucci
,
F.
,
Felice
,
M.
,
Maggioni
,
E.
,
Perotto
,
A.
,
Spada
,
F.
,
Moser
,
D.
, and
Cornaro
,
C.
,
2017
, “
Deterministic and Stochastic Approaches for Day-Ahead Solar Power Forecasting
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021010
.
132.
Chu
,
Y.
,
Pedro
,
H. T. C.
,
Kaur
,
A.
,
Kleissl
,
J.
, and
Coimbra
,
C. F. M.
,
2017
, “
Net Load Forecasts for Solar-Integrated Operational Grid Feeders
,”
Sol. Energy
,
158
, pp.
236
246
.
133.
Yang
,
D.
, and
Dong
,
Z.
,
2018
, “
Operational Photovoltaics Power Forecasting Using Seasonal Time Series Ensemble
,”
Sol. Energy
,
166
, pp.
529
541
.
134.
Wolff
,
B.
,
Kühnert
,
J.
,
Lorenz
,
E.
,
Kramer
,
O.
, and
Heinemann
,
D.
,
2016
, “
Comparing Support Vector Regression for PV Power Forecasting to a Physical Modeling Approach Using Measurement, Numerical Weather Prediction, and Cloud Motion Data
,”
Sol. Energy
,
135
, pp.
197
208
.
135.
Zjavka
,
L.
,
2020
, “
Photo-Voltaic Power Daily Predictions Using Expanding PDE Sum Models of Polynomial Networks Based on Operational Calculus
,”
Eng. Appl. Artif. Intell.
,
89
, p.
103409
.
136.
Jamal
,
T.
,
Carter
,
C.
,
Schmidt
,
T.
,
Shafiullah
,
G. M.
,
Calais
,
M.
, and
Urmee
,
T.
,
2019
, “
An Energy Flow Simulation Tool for Incorporating Short-Term PV Forecasting in a Diesel-PV-Battery Off-Grid Power Supply System
,”
Appl. Energy
,
254
, p.
113718
.
137.
Kushwaha
,
V.
, and
Pindoriya
,
N. M.
,
2019
, “
A SARIMA-RVFL Hybrid Model Assisted by Wavelet Decomposition for Very Short-Term Solar PV Power Generation Forecast
,”
Renewable Energy
,
140
, pp.
124
139
.
138.
Chaudhary
,
P.
, and
Rizwan
,
M.
,
2018
, “
Energy Management Supporting High Penetration of Solar Photovoltaic Generation for Smart Grid Using Solar Forecasts and Pumped Hydro Storage System
,”
Renewable Energy
,
118
, pp.
928
946
.
139.
Shireen
,
T.
,
Shao
,
C.
,
Wang
,
H.
,
Li
,
J.
,
Zhang
,
X.
, and
Li
,
M.
,
2018
, “
Iterative Multi-Task Learning for Time-Series Modeling of Solar Panel PV Outputs
,”
Appl. Energy
,
212
, pp.
654
662
.
140.
Afrasiabi
,
M.
,
Mohammadi
,
M.
,
Rastegar
,
M.
, and
Kargarian
,
A.
,
2019
, “
Multi-Agent Microgrid Energy Management Based on Deep Learning Forecaster
,”
Energy
,
186
, p.
115873
.
141.
Liu
,
Z.
,
Li
,
L.
,
Tseng
,
M.
, and
Lim
,
M. K.
,
2020
, “
Prediction Short-Term Photovoltaic Power Using Improved Chicken Swarm Optimizer—Extreme Learning Machine Model
,”
J. Cleaner Prod.
,
248
, p.
119272
.
142.
Eseye
,
A. T.
,
Lehtonen
,
M.
,
Tukia
,
T.
,
Uimonen
,
S.
, and
Millar
,
R. J.
,
2019
, “
Adaptive Predictor Subset Selection Strategy for Enhanced Forecasting of Distributed PV Power Generation
,”
IEEE Acess
,
7
, pp.
90652
90665
.
143.
Dawan
,
P.
,
Sriprapha
,
K.
,
Kittisontirak
,
S.
,
Boonraksa
,
T.
,
Junhuathon
,
N.
,
Titiroongruang
,
W.
, and
Niemcharoen
,
S.
,
2020
, “
Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model
,”
Energies
,
13
(
2
), p.
351
.
144.
Suresh
,
V.
,
Janik
,
P.
,
Rezmer
,
J.
, and
Leonowicz
,
Z.
,
2020
, “
Forecasting Solar PV Output Using Convolutional Neural Networks With a Sliding Window Algorithm
,”
Energies
,
13
(
3
), p.
723
.
145.
Zheng
,
J.
,
Zhang
,
H.
,
Dai
,
Y.
,
Wang
,
B.
,
Zheng
,
T.
,
Liao
,
Q.
,
Liang
,
Y.
,
Zhang
,
F.
, and
Song
,
X.
,
2020
, “
Time Series Prediction for Output of Multi-Region Solar Power Plants
,”
Appl. Energy
,
257
, p.
114001
.
146.
Anagnostos
,
D.
,
Schmidt
,
T.
,
Cavadias
,
S.
,
Soudris
,
D.
,
Poortmans
,
J.
, and
Catthoor
,
F.
,
2019
, “
A Method for Detailed, Short-Term Energy Yield Forecasting of Photovoltaic Installations
,”
Renewable Energy
,
2019
(
130
), pp.
122
129
.
147.
Schmelas
,
M.
,
Feldmann
,
T.
,
Fernandes
,
J. C.
, and
Bollin
,
E.
,
2015
, “
Photovoltaics Energy Prediction Under Complex Conditions for a Predictive Energy Management System
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031015
.
You do not currently have access to this content.