Abstract

This article presents a comprehensive study of the dynamic behavior of small vertical-axis wind turbines (VAWTs) based on local fabricated Savonius VAWTs, which is suitable for countries that have a moderate wind speed. The merits of this design are cleanliness, silent, start-up under low wind speed, independent wind directions, adaptability, and ease of manufacturing. Also, this article presents an experimental validation study for the optimized Savonius VAWT. Four verification test configurations of the optimized VAWT composite blades are designed, simulated, and fabricated of Glass—Polyester with different stacking sequence layout for each. Modified mechanical parameters are introduced to improve the scalability, reliability, and accuracy of the developed models. Based on wind energy conversion system basics, aerodynamic characteristics (tip speed ratio (λ) and coefficient of power (Cp)) and dynamic characteristics (natural frequencies and mode shapes) of Savonius rotor models are presented and simulated within solidworks simulation 2020 software. The dynamic characteristics such as frequency, mode shape, and damping factor are extensively investigated using fast Fourier transform (FFT) analyzer. The results show that the role of composite material blades in improving the dynamic performance of a wind turbine is significant.

References

1.
Ali
,
M. H.
,
2012
,
Wind Energy Systems, Solutions for Power Quality and Stabilization
,
CRC Press, Taylor & Francis Group
,
London
.
2.
Jain
,
P.
,
2011
,
Wind Energy Engineering
,
The McGraw-Hill Companies, Inc.
,
New York, USA
.
3.
Masters
,
G. M.
,
2013
,
Renewable and Efficient Electric Power Systems
, 2nd ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
413
415
.
4.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Rehan Jamil
,
S.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
. 10.1016/j.rser.2011.12.004
5.
Modi
,
V. J.
, and
Fernando
,
M. S. U. K.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
. 10.1115/1.3268289
6.
Pope
,
K.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2010
, “
Energy and Exergy Efficiency Comparison of Horizontal and Vertical Axis Wind Turbines
,”
Renew. Energy
,
35
(
9
), pp.
2102
2113
. https://doi.org/10.1016/j.renene.2010.02.013
7.
Batista
,
N. C.
,
Melício
,
R.
,
Matias
,
J. C. O.
, and
Catalão
,
J. P. S.
,
2011
, “
New Blade Profile for Darrieus Wind Turbines Capable to Self-Start
,”
IET Conf. Publ
,
Edinburgh, UK
,
Sept. 6–8
.
8.
Nelson
,
V.
, and
Starcher
,
K.
,
2019
,
Wind Energy, Renewable Energy and the Environment
,
CRC Press, Taylor & Francis Group, LLC
,
New York, USA
.
9.
Adaramola
,
M.
,
2014
,
Wind Turbine Technology, Principles and Design
,
CRC Press, Taylor & Francis Group, Apple Academic Press, Inc.
,
New Jersey
.
10.
Kim
,
S.
, and
Cheong
,
C.
,
2015
, “
Development of Low-Noise Drag-Type Vertical Wind Turbines
,”
Renew. Energy
,
79
(
1
), pp.
199
208
. 10.1016/j.renene.2014.09.047
11.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), pp.
1
14
. 10.1115/1.4038785
12.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manage.
,
52
(
1
), pp.
236
242
. 10.1016/j.enconman.2010.06.070
13.
Aissaoui
,
A.
, and
Tahour
,
A.
,
2016
, “
Wind Turbines Design, Control, and Applications
,”
ExLi4EvA.
10.5772/61672
14.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
. 10.1016/j.rser.2012.02.056
15.
Zhipeng
,
T.
,
Yingxue
,
Y.
,
Liang
,
Z.
, and
Bowen
,
Y.
,
2013
, “
A Review on the New Structure of Savonius Wind Turbines
,”
Adv. Mater. Res.
,
608–609
, pp.
467
478
.
16.
Muscolo
,
G. G.
, and
Molfino
,
R.
,
2014
, “
From Savonius to Bronzinus: A Comparison among Vertical Wind Turbines
,”
Energy Procedia
,
50
, pp.
10
18
. 10.1016/j.egypro.2014.06.002
17.
Alaimo
,
A.
,
Esposito
,
A.
,
Milazzo
,
A.
,
Orlando
,
C.
, and
Trentacosti
,
F.
,
2013
, “
Slotted Blades Savonius Wind Turbine Analysis by CFD
,”
Energies
,
6
(
12
), pp.
6335
6351
. 10.3390/en6126335
18.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
. 10.1016/j.apenergy.2018.01.029
19.
Sranpat
,
C.
,
Unsakul
,
S.
,
Choljararux
,
P.
, and
Leephakpreeda
,
T.
,
2017
, “
CFD-Based Performance Analysis on Design Factors of Vertical Axis Wind Turbines at Low Wind Speeds
,”
Energy Procedia
,
138
, pp.
500
505
. 10.1016/j.egypro.2017.10.235
20.
Mao
,
Z.
, and
Tian
,
W.
,
2015
, “
Effect of the Blade Arc Angle on the Performance of a Savonius Wind Turbine
,”
Adv. Mech. Eng.
,
7
(
5
), pp.
1
10
.
21.
Zhou
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renew. Energy
,
51
, pp.
373
381
. 10.1016/j.renene.2012.09.046
22.
Shaheen
,
M.
,
El-Sayed
,
M.
, and
Abdallah
,
S.
,
2015
, “
Numerical Study of Two-Bucket Savonius Wind Turbine Cluster
,”
J. Wind Eng. Ind. Aerodyn.
,
137
, pp.
78
89
. 10.1016/j.jweia.2014.12.002
23.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance, and Optimization of the Savonius Rotor
,”
J. Pow. Energy
,
227
(
4
), pp.
528
542
. 10.1177/0957650913480992
24.
Chen
,
J.
,
Chen
,
L.
,
Nie
,
L.
,
Xu
,
H.
,
Mo
,
Y.
, and
Wang
,
C.
,
2016
, “
Experimental Study of two-Stage Savonius Rotors With Different gap Ratios and Phase Shift Angles
,”
J. Renew. Sustain. Energy
,
8
(
6), p.
063302
. 10.1063/1.4966706
25.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
. 10.1016/j.apenergy.2014.10.022
26.
Altan
,
B. D.
, and
Atilgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manag.
,
49
(
12
), pp.
3425
3432
. 10.1016/j.enconman.2008.08.021
27.
Morshed
,
K. N.
, et al
,
2013
, “
Wind Tunnel Testing and Numerical Simulation on Aerodynamic Performance of a Three-Bladed Savonius Wind Turbine
,”
Int. J. Energy Environ. Eng.
, 4(
1
), pp.
4
18
. 10.1186/2251-6832-4-18
28.
Rahman
,
M.
,
Ahmed
,
M.
,
Soloiu
,
V.
,
Salyers
,
T.
,
ElShahat
,
A.
, and
Maroha
,
E.
,
2016
, “
Investigation of Aerodynamic Performance of Helical Shape Vertical-Axis Wind Turbine Models With Various Number of Blades Using Wind Tunnel Testing and Computational Fluid Dynamics
,”
ASME Int. Mech. Eng. Congr. Expo. IMECE
,
7
, p.
V007T09A089
. 10.1115/IMECE201668081
29.
Wang
,
Z.
,
Wang
,
Y.
, and
Zhuang
,
M.
,
2018
, “
Improvement of the Aerodynamic Performance of Vertical Axis Wind Turbines with Leadingedge Serrations and Helical Blades Using CFD and Taguchi Method
,”
Energy Convers. Manag.
,
177
(
May
), pp.
107
121
. 10.1016/j.enconman.2018.09.028
30.
Dhamotharan
,
V.
,
Meena
,
R.
,
Jadhav
,
P.
,
Ramu
,
P.
, and
Arul Prakash
,
K.
,
2015
, “
Robust Design of Savonius Wind Turbine
,”
Renew. Energy Serv. Mankind
,
1
, pp.
913
923
. 10.1007/978-3-319-17777-9_82
31.
Ghoneam
,
S.
,
Hamada
,
A.
, and
Sherif
,
T.
,
2021
, “
Modeling and Optimization for the Dynamic Performance of Vertical-Axis Wind Turbine Composite Blades
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021005
. 10.1115/1.4048159
32.
Zemamou
,
M.
,
Aggour
,
M.
, and
Toumi
,
A.
,
2017
, “
Review of Savonius Wind Turbine Design and Performance
,”
Energy Procedia
,
141
, pp.
383
388
. 10.1016/j.egypro.2017.11.047
33.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
. 10.1115/1.4041848
34.
Ghoneam
,
S.
,
Hamada and
,
A.
, and
Sherif
,
T.
,
2020
, “
Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Composite Blades
,”
Int. J. Mech Prod. Eng. (IJMPE)
,
8
(
6
), pp.
65
72
. http://www.iraj.in/journal/journal_file/journal_pdf/2-657-159842413665-72.pdf
35.
Saqib Hameed
,
M.
,
Kamran Afaq
,
S.
, and
Shahid
,
F.
,
2015
, “
Finite Element Analysis of a Composite VAWT Blade
,”
Ocean Eng.
,
109
, pp.
669
676
. 10.1016/j.oceaneng.2015.09.032
36.
MSC Software
,
2019
,
MSC/PATRAN User Manual
,
MSC Software Corporation
,
USA
.
37.
Mallick
,
P. K.
,
2008
,
Fiber Reinforced Composites: Materials, Manufacturing, and Design
,
Taylor & Francis Group, LLC
,
London
.
38.
Chou
,
T.-W.
, and
Kelly
,
A.
,
1980
, “
Mechanical Properties of Composites
,”
Ann. Rev. Mater. Sci.
,
10
(
1
), pp.
229
259
. 10.1146/annurev.ms.10.080180.001305
39.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
2010
,
Manufacturing Engineering and Technology
,
Pearson Education, Inc., Pearson Prentice Hall
,
New York
, pp.
484
525
.
40.
Burton
,
T.
,
Sharp
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Wind Energy Handbook
,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
, pp.
377
407
.
41.
Kurowski
,
P.
,
2019
,
Vibration Analysis With SolidWorks Simulation 2019
,
SDC Publications
,
USA
.
42.
Ed Akin
,
J.
,
2010
,
Finite Element Analysis Concepts via SolidWorks
,
World Scientific Co.
,
Hackensack, NJ
.
43.
Inman
,
D. J.
,
2014
,
Engineering Vibration
, 4th ed,
Pearson Education, Inc.
,
New York
, pp.
573
616
.
44.
Brincker
,
R.
, and
Ventura
,
C.
,
2015
,
Introduction to Operational Modal Analysis
,
John Wiley & Sons, Ltd
.,
Hoboken, NJ
.
45.
Maher
,
A.
, and
Hamada
,
A. A.
,
2004
, “
Dynamic Analysis of Laminated Composite Structure with Bolted Joints
,”
8th International Conference on Production Engineering Design and Control, PEDAC’2004
,
Alexandria, Egypt
,
December
.
You do not currently have access to this content.