Abstract

In the present paper, the flower pollination algorithm (FPA) is employed for tuning the controller parameters of a doubly fed induction generator (DFIG) in a wind energy system. These parameters are then compared with those generated by the genetic algorithm (GA) and the proportional-integral (PI) (initial design) controllers. Performance analysis of the DFIG is carried out in dynamic mode in two case studies. The first case study is carried out with no failure, the second one is subject to a short circuit in the electrical network. In this latter case study, a break occurs in the rotor circuit and disconnects the DFIG from the power grid. This gives rise to an excessive current in the rotor circuit which in turn influences the converters AC/DC/AC and makes the IGBT very sensitive. The GA and the FPA are used to tune the PI controllers with the purpose of improving the quality of a power supply should electrical disturbances occur. The results show that by applying an optimal PI controller design to a DFIG using the FPA the performance of the DFIG system can be improved in the event of disturbances. When the PI controller tuning using the GA and the initial control system design is compared with the DFIG using the optimized design, a significant decrease in the overshoot of the rotor current and the DC-link voltage is observed.

References

1.
Zhenya
,
L.
,
2015
,
Global Energy Interconnection; Chapter 6 – Innovation in Global Energy Interconnection Technologies
,
Academic Press
, pp.
239
272
.
2.
Mahvash
,
H.
,
Taher
,
S. A.
,
Rahimi
,
M.
, and
Shahidehpour
,
M.
,
2019
, “
Enhancement of DFIG Performance at High Wind Speed Using Fractional Order PI Controller in Pitch Compensation Loop
,”
Int. J. Electr. Power Energy Syst.
,
104
, pp.
259
268
. 10.1016/j.ijepes.2018.07.009
3.
Makhloufi
,
S.
,
Mekhaldi
,
A.
, and
Teguar
,
M.
,
2016
, “
Three Powerful Nature-Inspired Algorithms to Optimize Power Flow in Algeria's Adrar Power System
,”
Energy
,
116
(
Part 1
), pp.
1117
1130
. 10.1016/j.energy.2016.10.064
4.
Ahmed
,
A.
,
Galib
,
M. M. H.
,
Zaman
,
S. M. K.
, and
Sarowar
,
G.
,
2018
, “
An Optimization Methodology of Susceptance Variation Using Lead-Lag Controller for Grid Connected FSIG Based Wind Generator System
,”
J. Franklin Inst.
,
355
(
1
), pp.
197
217
. 10.1016/j.jfranklin.2017.11.013
5.
Qu
,
Z.
,
Zhang
,
K.
,
Mao
,
W.
,
Wang
,
J.
,
Liu
,
C.
, and
Zhang
,
W.
,
2017
, “
Research and Application of Ensemble Forecasting Based on a Novel Multi Objective Optimization Algorithm for Wind-Speed Forecasting
,”
Energy Convers. Manage.
,
154
, pp.
440
454
. 10.1016/j.enconman.2017.10.099
6.
Abdelaziz
,
A. Y.
,
Ali
,
E. S.
, and
Abd Elazim
,
S. M.
,
2016
, “
Implementation of Flower Pollination Algorithm for Solving Economic Load Dispatch and Combined Economic Emission Dispatch Problems in Power Systems
,”
Energy
,
101
, pp.
506
518
. 10.1016/j.energy.2016.02.041
7.
Dai
,
J.
,
Liu
,
D.
,
Hu
,
Y.
, and
Shen
,
X.
,
2014
, “
Research on Joint Power and Loads Control for Large Scale Directly Driven Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021015
. 10.1115/1.4025707
8.
Elgammal
,
A. A. A.
,
2014
, “
Optimal Design of PID Controller for Doubly-Fed Induction Generator-Based Wave Energy Conversion System Using Multi Objective Particle Swarm Optimization
,”
J. Technol. Innovations Renewable Energy
,
3
(
1
), pp.
21
30
. 10.6000/1929-6002.2014.03.01.4
9.
Hasanien
,
H. M.
, and
Hashem
,
G. M.
,
2018
, “
A Cuckoo Search Algorithm Optimizer for Steady-State Analysis of Self-Excited Induction Generator
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
2549
2555
. 10.1016/j.asej.2017.07.003
10.
Naidu
,
K.
,
Mokhlis
,
H.
,
Bakar
,
A. H. A.
, and
Terzija
,
V.
,
2017
, “
Performance Investigation of ABC Algorithm in Multi-Area Power System With Multiple Interconnected Generators
,”
Appl. Soft Comput. J.
,
57
, pp.
436
451
. 10.1016/j.asoc.2017.03.044
11.
Suryoatmojo
,
H.
,
Zakariya
,
A. M. B.
,
Anam
,
S.
,
Musthofa
,
A.
, and
Robandi
,
I.
,
2015
, “
Optimal Controller for Doubly Fed Induction Generator (DFIG) Using Differential Evolutionary Algorithm (DE)
,”
International Seminar on Intelligent Technology and Its Applications (ISITIA)
.
12.
Yang
,
X. S.
,
Cui
,
Z.
,
Xiao
,
R.
,
Gandomi
,
A. H.
, and
Karamanoglu
,
M.
,
2013
,
Swarm Intelligence and Bio-Inspired Computation: Theory and Applications
,
Elsevier
,
Waltham, MA
.
13.
Jagatheesan
,
K.
,
Anand
,
B.
,
Samanta
,
S.
,
Dey
,
N.
,
Santhi
,
V.
,
Ashour
,
A. S.
, and
Balas
,
V. E.
,
2017
, “
Application of Flower Pollination Algorithm in Load Frequency Control of Multi-Area Interconnected Power System With Nonlinearity
,”
Neural Comput. Appl.
,
28
(
1
), pp.
475
488
. 10.1007/s00521-016-2361-1
14.
Hussain
,
I.
,
Ranjan
,
S.
,
Das
,
D. C.
, and
Sinha
,
N.
,
2017
, “
Performance Analysis of Flower Pollination Algorithm Optimized PID Controller for Wind-PVSMES-BESS-Diesel Autonomous Hybrid Power System
,”
Int. J. Renew. Energy Res.
,
7
(
2
), pp.
643
651
.
15.
Askaria
,
H. M.
,
Eldessouki
,
M. A.
, and
Mostaf
,
M. A.
,
2015
, “
Optimal Power Control for Distributed DFIG Based WECS Using Genetic Algorithm Technique
,”
Am. J. Renewable Sustain. Energy
,
1
(
3
), pp.
115
127
.
16.
Zemmit
,
A.
,
Messalti
,
S.
, and
Harrag
,
A.
,
2018
, “
A New Improved DTC of Doubly Fed Induction Machine Using GA-Based PI Controller
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
1877
1885
. 10.1016/j.asej.2016.10.011
17.
Mohammadi
,
E.
,
Fadaeinedjad
,
R.
, and
Moschopoulos
,
G.
,
2020
, “
An Electromechanical Emulation-Based Study on the Behavior of Wind Energy Conversion Systems During Short Circuit Faults
,”
Energy Convers. Manage.
,
205
(
1
), p.
112401
. 10.1016/j.enconman.2019.112401
18.
Gao
,
D. W.
,
Wang
,
X.
,
Wang
,
J.
,
Gao
,
T.
,
Stefanovic
,
M.
, and
Li
,
X.
,
2019
, “
Optimal Pitch Control Design With Disturbance Rejection for the Controls Advanced Research Turbine
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011005
. 10.1115/1.4041097
19.
Shen
,
B.
,
Mwinviwiwa
,
B.
,
Zhang
,
Y.
, and
Ooi
,
B. T.
,
2009
, “
Sensorless Maximum Power Point Tracking of Wind by DFIG Using Rotor Position Phase Lock Loop (PLL)
,”
IEEE Trans. Power Electronic
,
24
(
4
), pp.
942
951
. 10.1109/TPEL.2008.2009938
20.
Zou
,
Y.
,
Elbuluk
,
M.
, and
Sozer
,
Y.
,
2012
, “
A Novel Maximum Power Points Tracking (MPPT) Operation of Doubly-fed Induction Generator (DFIG) Wind Power System
,”
IEEE Industry Application. Soc. Annual Meeting (IAS)
, pp.
1
6
.
21.
Falehi
,
A. D.
,
2020
, “
Optimal Power Tracking of DFIG-Based Wind Turbine Using MOGWO-Based Fractional-Order Sliding Mode Controller
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031004
. 10.1115/1.4044977
22.
Celik
,
E.
, and
Ozturk
,
N.
,
2018
, “
First Application of Symbiotic Organisms Search Algorithm to off-Line Optimization of PI Parameters for DSP-Based DC Motor Drives
,”
Neural Compu. Appl.
,
30
(
5
), p.
1699
. 10.1007/s00521-017-3256-5
23.
Nayak
,
P. C.
,
Prusty
,
U. C.
,
Sahu
,
P. C.
, and
Prusty
,
R. C.
,
2018
, “
Design and Tuning of Flower Pollination Algorithm Based 2DOF Controller in AGC of Multi Area Thermal Wind System
,”
Int. J. Adv. Res. Electron. Commun. Eng.
,
7
(
2
), pp.
118
126
.
24.
Moghaddam
,
M.j.H
,
Kalam
,
A.
,
Nowdeh
,
S. A.
,
Ahmadi
,
A.
,
Babanezhad
,
M.
, and
Saha
,
S.
,
2019
, “
Optimal Sizing and Energy Management of Stand-Alone Hybrid Photovoltaic/Wind System Based on Hydrogen Storage Considering LOEE and LOLE Reliability Indices Using Flower Pollination Algorithm
,”
Renewable Energy
,
135
, pp.
1412
1434
. 10.1016/j.renene.2018.09.078
25.
Kathuria
,
T.
,
Gupta
,
A.
,
Kumar
,
J.
,
Kumar
,
V.
, and
Rana
,
K. P. S.
,
2017
, “
Study of Optimization Methods for Tuning of PID Gains for Three Link Manipulator
,”
Proceedings of the Seventh International Conference Confluence 2017 on Cloud Computing, Data Science and Engineering
, pp.
99
104
.
26.
Wiangtong
,
T.
, and
Sirapatcharangkul
,
J.
,
2018
, “
PID Design Optimization Using Flower Pollination Algorithm for a Buck Converter
,”
17
th
International Symposium on Communications and Information Technologies, ISCIT 2017
, pp.
1
4
.
27.
Bharti
,
O. P.
,
Saket
,
R. K.
, and
Nagar
,
S. K.
,
2017
, “
Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques
,”
Eng. Technol. Appl. Sci. Res.
,
7
(
3
), pp.
1732
1736
. 10.48084/etasr.1231
28.
Abd-Elkareem
,
M.
,
Abd-Elalim
,
E.
, and
Ebrahim
,
M. A.
,
2015
, “
Optimal Controllers for DFIG Based Wind Farm Connected to Grid Using Evolutionary Techniques
,”
Int. J. New Technol. Sci. Eng.
,
2
(
5
), pp.
87
96
.
29.
Lakshmi
,
D.
,
Fathima
,
A.
, and
Muthu
,
R.
,
2016
, “
A Novel Flower Pollination Algorithm to Solve Load Frequency Control for a Hydro-Thermal Deregulated Power System
,”
Circuits Systems
,
7
(
04
), pp.
166
178
. 10.4236/cs.2016.74016
30.
Alam
,
D. F.
,
Yousri
,
D. A.
, and
Eteiba
,
M.
,
2015
, “
Flower Pollination Algorithm Based Solar PV Parameter Estimation
,”
Energy Convers. Manage.
,
101
, pp.
410
422
. 10.1016/j.enconman.2015.05.074
31.
Peesapati
,
R.
,
Yadav
,
V. K.
, and
Kumar
,
N.
,
2018
, “
Flower Pollination Algorithm Based Multi-Objective Congestion Management Considering Optimal Capacities of Distributed Generations
,”
Energy
,
147
, pp.
980
994
. 10.1016/j.energy.2018.01.077
32.
Zhang
,
W.
,
Qu
,
Z.
,
Zhang
,
K.
,
Mao
,
W.
,
Ma
,
Y
, and
Fan
,
X
,
2017
, “
A Combined Model Based on CEEMDAN and Modified Flower Pollination Algorithm for Wind Speed Forecasting
,”
Energy Convers. Manage.
,
136
, pp.
439
451
. 10.1016/j.enconman.2017.01.022
33.
Liu
,
Y.
,
Wang
,
Z.
,
Xiong
,
L.
,
Wang
,
J.
,
Jiang
,
X
,
Bai
,
G
,
Li
,
R
, and
Liu
,
S
,
2018
, “
DFIG Wind Turbine Sliding Mode Control with Exponential Reaching law Under Variable Wind Speed
,”
Int. J. Electr. Power Energy Syst.
,
96
, pp.
253
260
. 10.1016/j.ijepes.2017.10.018
34.
Song
,
Y. D.
,
Dhinakaran
,
B.
, and
Bao
,
X. Y.
,
2000
, “
Variable Speed Control of Wind Turbines Using Nonlinear and Adaptive Algorithms
,”
J. Wind Eng. Ind. Aerodyn.
,
85
(
3
), pp.
293
308
. 10.1016/S0167-6105(99)00131-2
35.
Boukhezzar
,
B.
, and
Siguerdidjane
,
H.
,
2005
, “
Nonlinear Control of Variable Speed Wind Turbines for Power Regulation
,”
Proceedings of IEEE Conference on Control Applications
, CCA
.
36.
Billy Muhando
,
E.
,
Senjyu
,
T.
,
Urasaki
,
N.
,
Yona
,
A.
,
Kinjo
,
H.
, and
Funabashi
,
T.
,
2007
, “
Gain Scheduling Control of Variable Speed WTG Under Widely Varying Turbulence Loading
,”
Renewable Energy
,
32
(
14
), pp.
2407
2423
. 10.1016/j.renene.2006.12.011
37.
Boukhezzar
,
B.
,
Lupu
,
L.
,
Siguerdidjane
,
H.
, and
Hand
,
M.
,
2007
, “
Multivariable Control Strategy for Variable Speed, Variable Pitch Wind Turbine
,”
Renewable Energy
,
32
(
8
), pp.
1273
1287
. 10.1016/j.renene.2006.06.010
38.
De Battista
,
H.
, and
Mantz
,
R.J
,
2004
, “
Dynamical Variable Structure Controller for Power Regulation of Wind Energy Conversion Systems
,”
IEEE Trans. Energy Conv.
,
19
(
4
), pp.
756
763
. 10.1109/TEC.2004.827705
You do not currently have access to this content.