Abstract

Biomass conversion processes can be energy intensive. There is a need to seek renewable sources to meet such energy demand. In this study, a partial heat of pyrolysis from a concentrated solar power (CSP)-based solar heat collector is modeled. A numerical investigation of the flow in the heat collector element (HCE) of the CSP is performed. By using the finite volume formulation, the fluid flow behavior within the pipe of the HCE is simulated to determine the thermal absorption, heat losses, and efficiency obtainable from the solar irradiation on the receiver tube. Monte-Carlo Ray-tracing based software, soltrace, is used to estimate the incident heat flux on the LS-2 receiver with an average direct normal irradiance (DNI) value, based on a comparative performance study of three types of molten salts (i.e., the heat transfer fluids (HTFs)). The performance of three kinds of the LS-2 HCE (i.e., vacuum, air-filled, and evacuated types) is also analyzed in terms of heat loss and efficiency measurements respectively. HITEC provides the best performance in terms of stability in delivering the partial heat of pyrolysis for the gasification of food waste on moderate velocities of 0.75—2 m/s. Also, the pyrolysis of the feedstock is proposed with an operating feedstock rate of 0.19 kg/s and 0.17 kg/s for lower heating value (LHV) and higher heating value (HHV), respectively. It is anticipated that the combined heat of pyrolysis from the proposed dual heat cycle, comprising both the CSP and a biogas plant, will provide a solution to the demand for alternative power from biomass energy conversion.

References

1.
Chung
,
J. N.
,
2014
, “
A Theoretical Study of Two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen
,”
Front. Energy Res.
,
1
(
12
), p.
10
. 10.3389/fenrg.2013.00012
2.
Babarinsa
,
O.
,
Ogedengbe
,
E. O. B.
, and
Rosen
,
M. A.
,
2014
, “
Mixing Performance of a Suspended Stirrer for Homogenizing Bio-Degradable Food Waste From Eatery Centres
,”
Sustainability
,
6
(
9
), pp.
5554
5565
. 10.3390/su6095554
3.
Adegoke
,
C. O.
, and
Bolaji
,
B. O.
,
1992
, “
Exergetic Analysis of Thermosyphon Solar Water Heating System
,”
Nigeria J. Renew. Energy
,
7
(
1/2
), pp.
50
54
.
4.
SBC Energy Institute
,
2013
, “
Concentrating Solar Power, Leading the Energy Transition, Factbook
,"
Schlumberger SBC Energy Institute
,
Paris
, June Ed., p.
2
.
5.
Ogedengbe
,
E. O. B.
, and
Rosen
,
M. A.
,
2012
, “
Electro-Kinetic Pumping With Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies
,”
Entropy
,
14
(
12
), pp.
2439
2455
. 10.3390/e14122439
6.
Jouhara
,
H.
,
Nannou
,
T. K.
,
Anguilano
,
L.
,
Ghazal
,
H.
, and
Spencer
,
N.
,
2017
, “
Heat Pipe Based Municipal Waste Treatment Unit for Home Energy Recovery
,”
Energy
,
139
, pp.
1210
1230
. 10.1016/j.energy.2017.02.044
7.
Reed
,
T.
,
1979
,
Problems and Opportunities for Solar Energy in Biomass, Pyrolysis and Gasification
, DR. 712, pp.
332
495
.
8.
Adinberg
,
R.
,
Epstein
,
M.
, and
Karni
,
J.
,
2004
, “
Solar Gasification of Biomass: A Molten Salt Pyrolysis Study
,”
ASME J. Sol. Energy Eng.
,
126
(
3
), pp.
850
857
. 10.1115/1.1753577
9.
Jiang
,
Y.
,
Liu
,
M.
, and
Sun
,
Y.
,
2019
, “
Review on the Development of High Temperature Phase Change Material Composites for Solar Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
203
, pp.
110164
. 10.1016/j.solmat.2019.110164
10.
Swadchaipong
,
N.
,
Kanestitaya
,
N.
,
Rojana
,
I.
,
Utistham
,
T.
, and
Wetwatana
,
U.
,
2013
, “
Hydrothermal Pyrolysis of Food Waste for Bio-Oil Production Over Ceria and H-ZSM-5
,”
4th International Conference on Biology, Environment and Chemistry
,
Phuket, Thailand
,
Nov. 23–24
, Vol.
58
, pp.
120
124
.
11.
Aysu
,
T.
, and
Küçük
,
M. M.
,
2014
, “
Biomass Pyrolysis in a Fixed-Bed Reactor: Effects of Pyrolysis Parameters on Product Yields and Characterization of Products
,”
Energy
,
64
, pp.
1002
1025
. 10.1016/j.energy.2013.11.053
12.
Wei-Hsin
,
C.
, and
Po-Chih
,
K.
,
2010
, “
A Study on Torrefaction of Various Biomass Materials and Its Impact on Lignocellulosic Structure Simulated by a Thermogravimetry
,”
Energy
,
35
(
6
), pp.
2580
2586
. 10.1016/j.energy.2010.02.054
13.
Czajczyńska
,
D.
,
Ahmad
,
D.
,
Krzyżyńska
,
R.
,
Jouhara
,
H.
, and
Rutkowski
,
P.
,
2018
, “
Products’ Composition of Food Waste Low Temperature Slow Pyrolysis
,”
E3S Web of Conferences
,
Online
, Vol.
44
.
14.
Liu
,
H.
,
Ma
,
X.
,
Li
,
L.
,
Hu
,
Z.
,
Guo
,
P.
, and
Jiang
,
Y.
,
2014
, “
The Catalytic Pyrolysis of Food Waste by Microwave Heating
,”
Bioresour. Technol.
,
166
, pp.
45
50
. 10.1016/j.biortech.2014.05.020
15.
Kayode
,
I. A.
,
Ogedengbe
,
E. O. B.
, and
Rosen
,
M. A.
,
2016
, “
Design of Stirrer Impeller With Variable Operational Speed for a Food Waste Homogenizer
,”
Sustainability
,
8
(
5
), p.
489
. 10.3390/su8050489
16.
Ogedengbe
,
E. O. B.
,
Kingsley
,
E.
,
Eteure
,
R. U.
, and
Rosen
,
M. A.
,
2012
, “
Feasibility Study of Cafeteria Energy Demand With Integration of a Downdraft Bio-Digester System
,”
Proceedings of 10th International Energy Conversion Engineering Conference
,
Atlanta, GA
,
July 30–Aug. 1
,
Paper AIAA No. 2012-3901
.
17.
Oshodi
,
T. E.
,
Okeke
,
D. E.
,
Ogedengbe
,
E. O. B.
,
Ehinmowo
,
A. B.
, and
Awosanya
,
O. G.
,
2019
, “
Process Flow Analysis of the Thermochemical Conversion of Food Waste in a Gasification Plant
,”
Proceedings of AIAA Propulsion & Energy Forum
,
Indianapolis, IN
,
Aug. 19–22
. https://doi.org/10.2514/6.2019-4073
18.
Chunguang
,
Z.
,
2014
, “
Gasification and Pyrolysis Characterization and Heat Transfer Phenomena During Thermal Conversion of Municipal Solid Waste
,”
Ph.D. dissertation
,
Department of Materials Science and Engineering, KTH-Royal Institute of Technology
,
Stockholm, Sweden
.
19.
Bakshi
,
A.
,
Taamallah
,
S.
, and
Kung
,
K. S.
,
2016
, “
Strategies for Organic Food Waste to Power Conversion in a New Apartment Complex in Lagos, Nigeria
,”
Final Report MIT 2.62, Fundamentals of Advanced Energy Conversion
,
Massachusetts Institute of Technology
,
MA
.
20.
Caubet
,
S.
,
Corte
,
P.
,
Fahim
,
C.
, and
Traverse
,
J. P.
,
1982
, “
Thermochemical Conversion of Biomass: Gasification by Flash Pyrolysis Study
,”
Sol. Energy
,
29
(
6
), pp.
565
572
. 10.1016/0038-092X(82)90065-2
21.
Masaaki
,
T.
,
Hitoshi
,
O.
,
Akira
,
A.
,
Shinji
,
K.
, and
Hiroshi
,
M.
,
2008
, “
Basic Characteristics of Food Waste and Food Ash on Steam Gasification
,”
Ind. Eng. Chem. Res.
,
47
(
7
), pp.
2414
2419
. 10.1021/ie0612966
22.
Lopez-Gonzalez
,
D.
,
Valverde
,
J. L.
,
Sanchez
,
P.
, and
Sanchez-Silva
,
L.
,
2013
, “
Characterization of Different Heat Transfer Fluids and Degradation Study by Using a Pilot Plant Device Operating at Real Conditions
,”
Energy
,
54
, pp.
240
250
. 10.1016/j.energy.2013.01.056
23.
Bradshaw
,
R. W.
, and
Siegel
,
N. P.
,
2008
, “
Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems
,”
Proceedings of ES2008, Energy Sustainability
,
Jacksonville, FL
,
Aug. 10–14
, pp.
1
7
.
24.
Kearney
,
D.
,
Kelly
,
B.
,
Herrmann
,
U.
,
Cable
,
R.
,
Pacheco
,
J.
,
Mahoney
,
R.
,
Price
,
H.
,
Blake
,
D.
,
Nava
,
P.
, and
Potrovitza
,
N.
,
2004
, “
Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field
,”
Energy
,
29
(
5–6
), pp.
861
870
. 10.1016/S0360-5442(03)00191-9
25.
National Renewable Energy Laboratory (NREL)
,
2013
, “
System Advisor Model—Heat Transfer Fluid Properties
,” https://sam.nrel.gov/content/heat-transfer-fluid-properties, Accessed March 3, 2018.
26.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,”
Golden, CO
,
Technical Report, Report No. NREL/TP 550-34169, National Renewable Energy Laboratory
.
27.
Price
,
H.
,
2001
, “
Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts
,”
Golden, CO
,
Technical Report, Report No. NREL/SR 550-35060
.
28.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
, 2nd ed.,
John Wiley and Sons
,
New York
.
29.
Schlaifer
,
P.
,
2012
, “
Performance Calculations and Optimization of a Fresnel Direct Steam Generation CSP Plant with Heat Storage
,”
M.Sc. Thesis, KTH Industrial Engineering and Management, KTH-Royal Institute of Technology, Stockholm, Sweden
.
30.
Ogedengbe
,
E. O. B.
, and
Naterer
,
G. F.
,
2004
, “
Non-Inverted Skew Upwind Scheme for Three-Dimensional Convective Transport
,”
Numer. Heat Transfer, Part B
,
46
(
2
), pp.
141
164
. 10.1080/10407790490449408
31.
Freedman
,
J. P.
,
Wang
,
H.
, and
Prasher
,
R. S.
,
2018
, “
Analysis of Nanofluid-Based Parabolic Trough Collectors for Solar Thermal Applications
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), pp.
1
8
. 10.1115/1.4039988
32.
Muir
,
B. L.
, and
Baliga
,
B. R.
,
1986
, “
Solution of Three-Dimensional Convection-Diffusion Problems Using Tetrahedral Elements and Flow-Oriented Upwind Interpolation Functions
,”
Numer. Heat Transfer
,
9
(
2
), pp.
143
162
. 10.1080/10407788608913470
33.
Dudley
,
E. V.
,
Kolb
,
J. G.
,
Mahoney
,
R. A.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
,
Test Results: SEGS LS-2 Collector
,
Sandia Laboratories
,
Albuquerque, NM
.
34.
RVR.
,
2016
, “
Specifiers: Solar Collector Efficiency
,” http://www.rvr.ie:900/index.php?title=Specifiers:_Solar_Collector_Efficiency, Accessed July 23, 2018.
35.
Price
,
H.
,
2000
, “
UVAC Test HCE Heat Loss Model
,”
Excel Spreadsheet
,
National Renewable Energy Laboratory
,
Golden, CO
.
36.
National Oceanic and Atmospheric Administration (NOAA, ESRL)
, “
Solar Position Calculator
,” https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html, Accessed January 1, 2020.
37.
Sohal
,
M. S.
,
Ebner
,
M. A.
,
Sabharwall
,
P.
, and
Sharpe
,
P.
,
2010
, “
Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties
,”
U.S Department of Energy, Idaho National Laboratory
,
ID
,
Technical Report No. 980801
.
38.
Kearney
,
D.
,
Hermann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blake
,
D.
, and
Price
,
H.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
170
176
. https://doi.org/10.1115/1.1565087
39.
Rongrong
,
Z.
,
Yongping
,
Y.
,
Qin
,
Y.
, and
Yong
,
Z.
,
2013
, “
Modeling and Characteristic Analysis of a Solar Parabolic Trough System: Thermal Oil as the Heat Transfer Fluid
,”
J. Renewable Energy
,
2013
, pp.
1
8
. 10.1155/2013/389514
40.
Davidsona
,
J. H.
,
Kittelsona
,
D. B.
, and
Hathawaya
,
B. J.
,
2014
, “
Development of a Molten Salt Reactor for Solar Gasification of Biomass
,”
Energy Procedia
,
49
, pp.
1950
1959
. 10.1016/j.egypro.2014.03.207
You do not currently have access to this content.